IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt6r978156.html
   My bibliography  Save this paper

Deployment of Sustainable Fueling/Charging Systems at California Highway Safety Roadside Rest Areas

Author

Listed:
  • Zhao, Hengbing
  • Burke, Andrew

Abstract

The transportation and electricity sectors are major sources of U.S. greenhouse gas (GHG) emissions because fossil fuels are the dominant energy source for the transportation sector and for electricity generation. Both sectors are facing the challenge of shifting to a more sustainable future. In the transportation sector, plug-in electric vehicles (PEV) and hydrogen fuel cell electric vehicles (FCEV) will play a key role in meeting California’s 2050 GHG goals. This research studied the feasibility of the deployment of renewable hydrogen fueling for FCEVs and DC fast charging stations for PEVs at Highway Safety Roadside Rest Areas (SRRAs) and the integration of the stations with the electricity grid, including solar electric generation, to lower the infrastructure cost and to accelerate the usage of renewable energy in the California transportation sector. Three hydrogen fueling/DC fast charging system configurations were studied: two integrated stations with energy storage using compressed hydrogen or batteries as the energy storage medium located on a single site, and a distributed system configuration deployed on different sites. In this analysis, we assessed the sustainable integrated fueling/charging stations based on 100% of utilization of the local PV electricity for hydrogen fueling/DC fast charging. The hydrogen fuelings and EV chargings were evenly divided based on their energy consumption. However, in the early stage of FCEV and PEV adoption, a relatively low utilization of fueling/charging stations is likely. In that case, the integrated stations could function as distributed power generation and energy storage for the grid. As the market for FCEVs and EVs develops, the integrated stations have the potential to serve the larger numbers of FCEVs and PEVs by using grid electricity during off-peak hours. View the NCST Project Webpage

Suggested Citation

  • Zhao, Hengbing & Burke, Andrew, 2016. "Deployment of Sustainable Fueling/Charging Systems at California Highway Safety Roadside Rest Areas," Institute of Transportation Studies, Working Paper Series qt6r978156, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt6r978156
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6r978156.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiani, Behdad & Ogden, Joan & Sheldon, F. Alex & Cordano, Lauren, 2020. "Utilizing Highway Rest Areas for Electric Vehicle Charging: Economics and Impacts on Renewable Energy Penetration in California," Institute of Transportation Studies, Working Paper Series qt2c91x13m, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt6r978156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.