IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt6ht5185q.html
   My bibliography  Save this paper

Developing an Interactive Machine-Learning-based Approach for Sidewalk Digitalization

Author

Listed:
  • Luo, Ji
  • Wu, Guoyuan

Abstract

In urban areas, many socio-economic concerns have been raised regarding fatal collisions, traffic congestion, and deteriorated air quality due to increased travel and logistic demands as well as the existing on-road transportation systems. As one of the promising remedies, active transportation has been advocated, which may not only mitigate congestion on local streets, but also promote physical fitness, foster community livability, and boost local economy. To promote the active transportation mode, extensive work has been focused on planning and developing a number of pedestrian and bicyclist related programs which require the infrastructure, e.g., sidewalks, as a premise. A significant amount of these efforts have to go for the setup, maintenance and evaluation of the sidewalk inventory on a relatively large geographic scale (e.g., citywide, statewide), which lays a solid foundation for a variety of active-mobility-focused applications and related research. View the NCST Project Webpage

Suggested Citation

  • Luo, Ji & Wu, Guoyuan, 2018. "Developing an Interactive Machine-Learning-based Approach for Sidewalk Digitalization," Institute of Transportation Studies, Working Paper Series qt6ht5185q, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt6ht5185q
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6ht5185q.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt6ht5185q. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.