IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt6d64d2tk.html
   My bibliography  Save this paper

Smart Charging of Electric Vehicle Fleets: Modeling, Algorithm Development, and Grid Impact Analysis, with Emphasis on Fleets of Transit and Heavy-Duty Freight Vehicles

Author

Listed:
  • Viteri, Christian
  • Taylor, David
  • Leamy, Michael

Abstract

High charging loads associated with fleets of commercial electric vehicles (EVs) are expected to significantly stress electric power distribution networks, leading to high costs seen by fleet operators. To address these challenges, this report presents a highly flexible smart charging (SC) algorithm for managing EV fleets that arrive and depart from a common depot on a schedule. The algorithm features (i) primary consideration of multiple fleet operator preferences (e.g. minimizing cost, using carbon-free energy), (ii) secondary consideration of grid impact that leverages the existence of multiple optimal (or near-optimal) ways to satisfy fleet operator preferences, and (iii) automatic detection and handling of infeasibility due to large energy demands (characteristic of fleet charging). Provided in this document are two numerical impact assessment studies in which the SC algorithm is shown to be superior to conventional rapid charging, and conventional ‘smart’ charging solutions on the market. These studies utilize a set of synthetic, but realistic fleet charging requirements, a physics-based model of a real feeder and one year of real, hourly load data for that feeder. The first numerical study shows that the proposed SC algorithm can lead to significant (up to 44%, but scenario-dependent) reductions in a fleet operator’s annual electricity bill. The second numerical study shows that significant transformer overloading and voltage drop issues can be associated with conventional fleet charging methods, and that the proposed SC algorithm eliminates these issues, thereby enabling higher EV penetration levels and offsetting infrastructure upgrades. View the NCST Project Webpage

Suggested Citation

  • Viteri, Christian & Taylor, David & Leamy, Michael, 2024. "Smart Charging of Electric Vehicle Fleets: Modeling, Algorithm Development, and Grid Impact Analysis, with Emphasis on Fleets of Transit and Heavy-Duty Freight Vehicles," Institute of Transportation Studies, Working Paper Series qt6d64d2tk, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt6d64d2tk
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6d64d2tk.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt6d64d2tk. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.