IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt4x30z49z.html
   My bibliography  Save this paper

Recycling Diesel Soot Particles for Use as Activated Carbon in Li Ion Batteries

Author

Listed:
  • Cronin, Stephen B

Abstract

This report documents the successful capture and reuse of diesel exhaust soot particles as a conductive additive in lithium manganese oxide (LMO) and lithium iron phosphate (LFP) cathodes in Li-ion batteries. This approach enables an abundant toxic pollutant to be converted into a valuable material for energy storage devices. This study consists of an initial characterization of the diesel soot particles, a high-temperature annealing step to remove residual organics and unburned hydrocarbons, and characterization of the electrical performance in a Li-ion battery configuration. Here, composite electrodes are fabricated by mixing active materials (LFP or LMO) with conductive carbon and binders. The performance of the diesel soot particles as conductive additives is compared with that of commercially available activated carbon (i.e., Super P®). The current evolution of the composite electrode made with diesel soot particles demonstrates comparable performance to the electrodes containing the Super P® carbon. Based on high-resolution transmission electron microscope (HRTEM) images and scanning mobility particle sizer (SMPS) spectra, it is found that these diesel soot nanoparticles follow a narrow log-normal distribution centered around 100 nm in diameter and consist of highly porous amorphous carbon, which provide a large surface-to-volume ratio, making them ideal candidates for electrode materials in Li ion batteries. View the NCST Project Webpage

Suggested Citation

  • Cronin, Stephen B, 2022. "Recycling Diesel Soot Particles for Use as Activated Carbon in Li Ion Batteries," Institute of Transportation Studies, Working Paper Series qt4x30z49z, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt4x30z49z
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/4x30z49z.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Engineering; Physical Sciences and Mathematics; Diesel engine exhaust gases; Electrodes; Energy conversion; Lithium batteries; Particulates; Recycling;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt4x30z49z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.