Author
Abstract
While the existing work on technology innovation is abundant, the innovation process largely remains a “black box,” shrouded in mystery. Energy models that incorporate innovation concepts, such as experience curves, fail to consider the fundamental processes that drive innovation. This dissertation research establishes a set of methodological approaches to better break in to this innovation black box, aiding in the quantification of the more qualitative approaches to innovation. These methods are applied to better examine low-carbon technology innovation in transportation. Specifically, this dissertation looks at biofuel innovation and the more recent diffusion of electric vehicles. Patent trends, one traditional approach for quantifying innovations, are used to provide a point of comparison for the novel methodologies employed. This research shows that the innovation narrative and conclusions that can be drawn from patent data are largely dependent on how patents are classified. Employing statistical models in conjunction with computational linguistics and machine-learning algorithms, it is possible to classify large bodies of text. This methodology is applied to a large selection of patents to better classify biofuel technologies. Additionally, this method is applied to a large repository of textual media, such as newspaper articles and trade journals, to select for specific technologies, and to classify articles by the type of information they convey. This Technology Innovation System (TIS) database is believed to adequately proxy the flow of information over time, due to the large number of documents collected. The innovation trends captured in the TIS database align well with the biofuel narrative established in literature. There is also good alignment between patent data classified through this methodology and the TIS database. Through use of the TIS database in conjunction with deployment data and policy data, this dissertation demonstrates several applications for assessing technology innovation. Results can be used to provide suggestions, supported by the data, which may foster improved innovation outcomes for low-carbon transportation technologies
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt35x9695v. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.