IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt2pk6t2cz.html
   My bibliography  Save this paper

Micromobility Trip Characteristics, Transit Connections, and COVID-19 Effects

Author

Listed:
  • Fukushige, Tatsuya MS
  • Fitch, Dillon T. PhD
  • Mohiuddin, Hossain MS
  • Andersen, Hayden BS
  • Jenn, Alan PhD

Abstract

While micromobility services (e.g., bikeshare, e-bike share, e-scooter share) hold great potential for providing clean travel, estimating the effects of those services on vehicle miles traveled and reducing greenhouse gases is challenging. To address some of the challenges, this study examined survey, micromobility, and transit data collected from 2017 to 2021 in approximately 20 U.S. cities. Micromobility fleet utilization ranged widely from 0.7 to 12 trips per vehicle per day, and the average trip distance was 0.8 to 3.6 miles. The median (range) rates at which micromobility trips substituted for other modes were 41% (16–71%) for car trips, 36% (5–48%) for walking, and 8% (2–35%) for transit, 5% (2–42%) for no trip. In most cities, the mean actual trip distance was approximately 1.5 to 2 times longer than the mean distance of a line connecting origin to destination. There was a weak and unclear connection between micromobility use and transit use that requires further study to more clearly delineate, but micromobility use had a stronger positive relationship to nearby rail use than to nearby bus use in cities with rail and bus service. The COVID-19 pandemic led to more moderate declines in docked than in dockless bike-share systems. Metrics that would enable better assessment of the impacts of micromobility are vehicle miles traveled and emissions of micromobility fleets and their service vehicles, and miles and percentage of micromobility trips that connect to transit or substitute for car trips.

Suggested Citation

  • Fukushige, Tatsuya MS & Fitch, Dillon T. PhD & Mohiuddin, Hossain MS & Andersen, Hayden BS & Jenn, Alan PhD, 2022. "Micromobility Trip Characteristics, Transit Connections, and COVID-19 Effects," Institute of Transportation Studies, Working Paper Series qt2pk6t2cz, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt2pk6t2cz
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/2pk6t2cz.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohiuddin, Hossain & Fitch-Polse, Dillon T. & Handy, Susan L., 2023. "Does bike-share enhance transport equity? Evidence from the Sacramento, California region," Journal of Transport Geography, Elsevier, vol. 109(C).

    More about this item

    Keywords

    Engineering; Micromobility; sustainable transportation; public transit; travel behavior; mode choice; performance metrics; COVID-19;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt2pk6t2cz. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.