IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt2gp9q07n.html
   My bibliography  Save this paper

California Hydrogen Infrastructure and ZEV Adoption Towards a Carbon Free Grid in 2045

Author

Listed:
  • Kiani, Behdad
  • Ogden, Joan

Abstract

The transportation sector is a major source of California’s greenhouse gas emissions, contributing 41% of the state total[1]. California policy is moving rapidly toward Zero Emission battery electric vehicles (BEV) and hydrogen fuel cell vehicles (FCV). Governor Newsom has issued an executive order that all new in-state sales of passenger vehicles should be Zero Emission Vehicles (ZEV) by 2035. Further, the California Air Resources Board has approved rulemaking requiring that more than half of trucks sold in the state must be zero-emissions by 2035, and all of them by 2045 [1a].California has the ambitious goal of achieving a 60% renewable electricity grid by 2030 and 100% carbon free grid by 2045. High penetration of variable renewable energy (VRE) requires seasonal storage to match supply and demand and hydrogen could be a possible candidate for this purpose [1b]. The author has developed the CALZEEV energy-economic model to study possible roles for hydrogen in a VRE intensive future grid with a large Zero Emission Vehicle fleet, comprised of both BEVs and FCVs. In particular, we study whether we can provide sufficient seasonal storage for a 100% zero carbon electricity grid and the potential role of H2 infrastructure in a BEV/FCEV combination for a sustainable path towards a zero-emission energy system. The role of hydrogen infrastructure in seasonal storage for balancing VRE generation while meeting demand for hydrogen vehicles year around has been studied, including economic impacts.

Suggested Citation

  • Kiani, Behdad & Ogden, Joan, 2022. "California Hydrogen Infrastructure and ZEV Adoption Towards a Carbon Free Grid in 2045," Institute of Transportation Studies, Working Paper Series qt2gp9q07n, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt2gp9q07n
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/2gp9q07n.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiani, Behdad & Ogden, Joan & Sheldon, F. Alex & Cordano, Lauren, 2020. "Utilizing Highway Rest Areas for Electric Vehicle Charging: Economics and Impacts on Renewable Energy Penetration in California," Institute of Transportation Studies, Working Paper Series qt2c91x13m, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Keywords

      Engineering;

      NEP fields

      This paper has been announced in the following NEP Reports:

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt2gp9q07n. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.