IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt00d6591g.html
   My bibliography  Save this paper

Energy-aware Trajectory Optimization of Connected and Automated Vehicle Platoons through a Signalized Intersection

Author

Listed:
  • Han, Xiao PhD
  • Ma, Rui PhD
  • Zhang, H. Michael PhD

Abstract

Traffic signals, while serving an important function to coordinate vehicle movements through intersections, also cause frequent stops and delays, particularly when they are not properly timed. Such stops and delays contribute to significant amount of fuel consumption and greenhouse gas emissions. The recent development of connected and automated vehicle (CAV) technology provides new opportunities to enable better control of vehicles and intersections, that in turn reduces fuel consumption and emissions. In this paper, we propose platoon-trajectory-optimization (PTO) to minimize the total fuel consumption of a CAV platoon through a signalized intersection. In this approach, all CAVs in one platoon are considered as a whole, that is, all other CAVs follow the trajectory of the leading one with a time delay and minimum safety gap, which is enabled by vehicle to vehicle communication. Moreover, the leading CAV in the platoon learns of the signal timing plan just after it enters the approach segment through vehicle to infrastructure communication. We compare our PTO control with the other two controls, in which the leading vehicle adopts the optimal trajectory (LTO) or drive with maximum speed (AT), respectively, and the other vehicles follow the leading vehicle with a simplified Gipps’ car-following model. Furthermore, we extend the controls into multiple platoons by considering the interactions between the two platoons. The numerical results demonstrate that PTO has better performance than LTO and AT, particularly when CAVs have enough space and travel time to smooth their trajectories. The reduction of travel time and fuel consumption can be as high as 40% and 30% on average, respectively, in the studied cases, which shows the great potential of CAV technology in reducing congestion and negative environmental impact of automobile transportation.

Suggested Citation

  • Han, Xiao PhD & Ma, Rui PhD & Zhang, H. Michael PhD, 2019. "Energy-aware Trajectory Optimization of Connected and Automated Vehicle Platoons through a Signalized Intersection," Institute of Transportation Studies, Working Paper Series qt00d6591g, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt00d6591g
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/00d6591g.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Yangsheng & Sun, Siyuan & Zhu, Fangyi & Wu, Yunxia & Yao, Zhihong, 2023. "A mixed capacity analysis and lane management model considering platoon size and intensity of CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).

    More about this item

    Keywords

    Engineering; Connect vehicles; autonomous vehicles; traffic platooning; fuel consumption; vehicle trajectories; trajectory controld;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt00d6591g. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.