IDEAS home Printed from https://ideas.repec.org/p/cdf/wpaper/2025-9.html
   My bibliography  Save this paper

How Does Artificial Intelligence Change Carbon Emission Intensity? A Firm Lifecycle Perspective

Author

Listed:
  • Wu, Qiang
  • Zhou, Peng

    (Cardiff Business School, Cardiff University)

Abstract

Artificial intelligence (AI) is crucial in achieving the carbon peak and neutrality goals and mitigating climate change. Although previous studies have explored cross-sectional differences in corporate carbon emissions, temporal heterogeneities in firm lifecycles have been overlooked. Therefore, this study investigates the effect of AI adoption on carbon emission intensity over firm lifecycles and the micro-level mechanisms of this effect. This study examines panel data from Chinese listed companies (2010–2021) using a two-way fixed-effects model and the difference-in-differences method. The empirical results demonstrate that AI significantly reduces enterprises’ carbon emission intensity. However, this effect is mainly observed in growth-stage enterprises and not in decline-stage enterprises. The mechanism analysis reveals that AI primarily reduces enterprises’ carbon emission intensity by improving productivity and promoting innovation. The effect on productivity is particularly evident in growth-stage enterprises, whereas the effect on innovation is dominant in decline-stage enterprises. Heterogeneity tests indicate that the effect on state-owned enterprises, medium-sized enterprises, the manufacturing sector, heavily polluting industries, non-high-tech industries, and capital-intensive industries is more pronounced than that on other enterprises. These findings suggest that enterprises should actively adopt AI, and differentiated AI adoption strategies should be formulated based on the needs of enterprises at different lifecycle stages.

Suggested Citation

  • Wu, Qiang & Zhou, Peng, 2025. "How Does Artificial Intelligence Change Carbon Emission Intensity? A Firm Lifecycle Perspective," Cardiff Economics Working Papers E2025/9, Cardiff University, Cardiff Business School, Economics Section.
  • Handle: RePEc:cdf:wpaper:2025/9
    as

    Download full text from publisher

    File URL: http://carbsecon.com/wp/E2025_9.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    artificial intelligence; carbon emission intensity; firm lifecycle; productivity;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdf:wpaper:2025/9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yongdeng Xu (email available below). General contact details of provider: https://edirc.repec.org/data/ecscfuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.