IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/132.html
   My bibliography  Save this paper

Nonparametric priors for vectors of survival functions

Author

Listed:
  • Ilenia Epifani
  • Antonio Lijoi

Abstract

The paper proposes a new nonparametric prior for two-dimensional vectors of survival functions (S1,S2). The definition we introduce is based on the notion of Lévy copula and it will be used to model, in a nonparametric Bayesian framework, two-sample survival data. Such an application will yield a natural extension of the more familiar neutral to the right process of Doksum (1974) adopted for drawing inferences on single survival functions. We, then, obtain a description of the posterior distribution of (S1,S2), conditionally on possibly right-censored data. As a by-product of our analysis, we find out that the marginal distribution of a pair of observations from the two samples coincides with the Marshall-Olkin or the Weibull distribution according to specific choices of the marginal Lévy measures.

Suggested Citation

  • Ilenia Epifani & Antonio Lijoi, 2009. "Nonparametric priors for vectors of survival functions," Carlo Alberto Notebooks 132, Collegio Carlo Alberto.
  • Handle: RePEc:cca:wpaper:132
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.132.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.