IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/2332.html
   My bibliography  Save this paper

Cointegration without Unit Roots

Author

Listed:
  • Duffy, J.
  • Simons, J.

Abstract

It has been known since Elliott (1998) that standard methods of inference on cointegrating relationships break down entirely when autoregressive roots are near but not exactly equal to unity. We consider this problem within the framework of a structural VAR, arguing this it is as much a problem of identification failure as it is of inference. We develop a characterisation of cointegration based on the impulse response function, which allows long-run equilibrium relationships to remain identified even in the absence of exact unit roots. Our approach also provides a framework in which the structural shocks driving the common persistent components continue to be identified via long-run restrictions, just as in an SVAR with exact unit roots. We show that inference on the cointegrating relationships is affected by nuisance parameters, in a manner familiar from predictive regression; indeed the two problems are asymptotically equivalent. By adapting the approach of Elliott, Müller and Watson (2015) to our setting, we develop tests that robustly control size while sacrificing little power (relative to tests that are efficient in the presence of exact unit roots).

Suggested Citation

  • Duffy, J. & Simons, J., 2023. "Cointegration without Unit Roots," Cambridge Working Papers in Economics 2332, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:2332
    Note: jrs89
    as

    Download full text from publisher

    File URL: https://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe2332.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Cointegration; inference; near-integrated processes; least-favourable distributions; nuisance parameters; power;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.