IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/1806.html
   My bibliography  Save this paper

Testing in High-Dimensional Spiked Models

Author

Listed:
  • Johnstone, I. M
  • Onatski, A.

Abstract

We consider the five classes of multivariate statistical problems identified by James (1964), which together cover much of classical multivariate analysis, plus a simpler limiting case, symmetric matrix denoising. Each of James' problems involves the eigenvalues of {code} where H and E are proportional to high dimensional Wishart matrices. Under the null hypothesis, both Wisharts are central with identity covariance. Under the alternative, the non-centrality or the covariance parameter of H has a single eigenvalue, a spike, that stands alone. When the spike is smaller than a case-specific phase transition threshold, none of the sample eigenvalues separate from the bulk, making the testing problem challenging. Using a unified strategy for the six cases, we show that the log likelihood ratio processes parameterized by the value of the sub-critical spike converge to Gaussian processes with logarithmic correlation. We then derive asymptotic power envelopes for tests for the presence of a spike.

Suggested Citation

  • Johnstone, I. M & Onatski, A., 2018. "Testing in High-Dimensional Spiked Models," Cambridge Working Papers in Economics 1806, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1806
    Note: ao319
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1806.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.

    More about this item

    Keywords

    Likelihood ratio test; hypergeometric function; principal components analysis; canonical correlations; matrix denoising; multiple response regression;
    All these keywords.

    JEL classification:

    • E20 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.