IDEAS home Printed from https://ideas.repec.org/p/boe/boeewp/0525.html
   My bibliography  Save this paper

Filtered historical simulation Value-at-Risk models and their competitors

Author

Listed:
  • Gurrola-Perez, Pedro

    (Bank of England)

  • Murphy, David

    (Bank of England)

Abstract

Financial institutions have for many years sought measures which cogently summarise the diverse market risks in portfolios of financial instruments. This quest led institutions to develop Value-at-Risk (VaR) models for their trading portfolios in the 1990s. Subsequently, so-called filtered historical simulation VaR models have become popular tools due to their ability to incorporate information on recent market returns and thus produce risk estimates conditional on them. These estimates are often superior to the unconditional ones produced by the first generation of VaR models. This paper explores the properties of various filtered historical simulation models. We explain how these models are constructed and illustrate their performance, examining in particular how filtering transforms various properties of return distribution. The procyclicality of filtered historical simulation models is also discussed and compared to that of unfiltered VaR. A key consideration in the design of risk management models is whether the model’s purpose is simply to estimate some percentile of the return distribution, or whether its aims are broader. We discuss this question and relate it to the design of the model testing framework. Finally, we discuss some recent developments in the filtered historical simulation paradigm and draw some conclusions about the use of models in this tradition for the estimation of initial margin requirements.

Suggested Citation

  • Gurrola-Perez, Pedro & Murphy, David, 2015. "Filtered historical simulation Value-at-Risk models and their competitors," Bank of England working papers 525, Bank of England.
  • Handle: RePEc:boe:boeewp:0525
    as

    Download full text from publisher

    File URL: https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2015/filtered-historical-simulation-value-at-risk-models-and-their-competitors.pdf?la=en&hash=34BF0E24DB60656E044E3DB5524E08DF5D0112D3
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramon Alemany & Catalina Bolancé & Montserrat Guillén, 2012. "Nonparametric estimation of Value-at-Risk," Working Papers XREAP2012-19, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2012.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
    2. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    3. Jean-Paul Laurent & Hassan Omidi Firouzi, 2022. "Market Risk and Volatility Weighted Historical Simulation After Basel III," Working Papers hal-03679434, HAL.
    4. Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
    5. Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    6. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    7. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    8. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
    9. Claude Martini & Arianna Mingone, 2023. "A closed form model-free approximation for the Initial Margin of option portfolios," Papers 2306.16346, arXiv.org.
    10. Junyao Chen & Tony Sit & Hoi Ying Wong, 2019. "Simulation-based Value-at-Risk for Nonlinear Portfolios," Papers 1904.09088, arXiv.org.
    11. Jin, YangKyu & Suh, Sangwon, 2024. "Procyclical variation margins in central clearing," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    12. Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
    13. Westgaard, Sjur & Fleten, Stein-Erik & Negash, Ahlmahz & Botterud, Audun & Bogaard, Katinka & Verling, Trude Haugsvaer, 2021. "Performing price scenario analysis and stress testing using quantile regression: A case study of the Californian electricity market," Energy, Elsevier, vol. 214(C).
    14. Jae‐Yun Jun & Victor Lebreton & Yves Rakotondratsimba, 2021. "Forecasting negative yield‐curve distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 367-386, April.
    15. Murphy, David & Vause, Nicholas, 2021. "A CBA of APC: analysing approaches to procyclicality reduction in CCP initial margin models," Bank of England working papers 950, Bank of England.
    16. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alemany, Ramon & Bolancé, Catalina & Guillén, Montserrat, 2013. "A nonparametric approach to calculating value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 255-262.

    More about this item

    Keywords

    Value-at-Risk; filtered historical simulation; conditional volatility; volatility scaling; risk model backtesting;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boe:boeewp:0525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Media Team (email available below). General contact details of provider: https://edirc.repec.org/data/boegvuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.