IDEAS home Printed from https://ideas.repec.org/p/boc/usug24/03.html
   My bibliography  Save this paper

Fungible regression coefficients

Author

Listed:
  • Phil Ender

    (UCLA Stat Consulting)

Abstract

Ordinary least-squares regression (OLS) estimates coefficients such that the residual sum of squares (RSS) is a minimum. Further, the R-squared between the response variable and the predictors is a maximum. The solution for these OLS coefficients is unique; that is, there is only one set of coefficients that minimizes the residuals. But what if we estimated coefficients that come within one percent (0.01) or less of the maximum value of R-squared. There can be multiple sets of coefficients that yield the same R-squared. These are the fungible regression coefficients (FRCs). How many different fungible regression coefficients are possible? What do these FRCs look like? Are these FRCs of any use whatsoever? This presentation will address these questions.

Suggested Citation

  • Phil Ender, 2024. "Fungible regression coefficients," 2024 Stata Conference 03, Stata Users Group.
  • Handle: RePEc:boc:usug24:03
    as

    Download full text from publisher

    File URL: http://repec.org/usug2024/US24_Ender.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niels Waller, 2008. "Fungible Weights in Multiple Regression," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 691-703, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Luo & Razia Azen, 2013. "Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 3-31, February.
    2. Clintin Davis-Stober, 2011. "A Geometric Analysis of When Fixed Weighting Schemes Will Outperform Ordinary Least Squares," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 650-669, October.
    3. Jolynn Pek & Hao Wu, 2015. "Profile Likelihood-Based Confidence Intervals and Regions for Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 1123-1145, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug24:03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.