IDEAS home Printed from https://ideas.repec.org/p/boc/usug22/18.html
   My bibliography  Save this paper

Comparative benefits of analyzing spatial aggregate data using Stata’s Sp versus gsem and sem

Author

Listed:
  • Emil Coman

    (Health Disparities Institute, UConn School of Medicine)

Abstract

We demonstrate the powers of the underutilized Stata spatial analytical module Sp, with an eye on the broader and older path analytic modeling framework (gsem and sem, which stands for structural equation modeling [SEM]). Spatial aggregate data have become widely available, yet analysts often ignore their spatial structure (regions have neighbors, and neighboring regions are more similar than by chance). Research often reports artificial naïve/a-spatial associations that ignore this spatial nonindependence. We analyze public data from the CDC, on social vulnerability and life expectancy, at census tract level, using the state of CT in the U.S. as illustration. We compare (1) the spregress modeling options against SEM models that include the outcome’s spatial lag as copredictor; (2) a two-step mediation model with spregress against SEM with indirect effects; (3) the total effects of a spatial predictor on a spatial outcome estimated with spregress by adding up effects from neighbors to each region (and back), against nonrecursive SEM models that use spatial lag versions of each spatial variable as instrumental variables. We point to several extensions of spatial modeling into the SEM approach, like spatial factor analysis and spatial "causal" mediation models, and contrast Stata’s utilities against GeoDa and Mplus comparable models.

Suggested Citation

  • Emil Coman, 2022. "Comparative benefits of analyzing spatial aggregate data using Stata’s Sp versus gsem and sem," 2022 Stata Conference 18, Stata Users Group.
  • Handle: RePEc:boc:usug22:18
    as

    Download full text from publisher

    File URL: http://repec.org/usug2022/US22_Coman.zip
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug22:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.