Author
Listed:
- Rachael A. Hughes
(University of Bristol)
- Michael G. Kenward
(Luton)
- Jonathan A.C. Sterne
(University of Bristol)
- Kate Tilling
(University of Bristol)
Abstract
Linear mixed-effects models are commonly used for the analysis of longitudinal biomarkers of disease. Taylor, Cumberland, and Sy/In (1994) proposed modeling biomarkers with a linear mixed-effects model with an added integrated Ornstein–Uhlenbeck (IOU) process (linear mixed-effects IOU model). This allows for autocorrelation, changing within-subject variance, and the incorporation of derivative tracking, that is, how much a subject tends to maintain the same trajectory for extended periods of time. Taylor, Cumberland, and Sy argued that the covariance structure induced by the stochastic process in this model was interpretable and more biologically plausible than the standard linear mixed-effects model. However, their model is rarely used, partly because of the lack of available software. We present a new Stata command, xtiou, that fits the linear mixed-effects IOU model and its special case, the linear mixed-effects Brownian motion model. The model can be fit to balanced and unbalanced data, using restricted maximum-likelihood estimation, where the optimization algorithm is either the Newton–Raphson, Fisher scoring, or average information algorithm, or any combination of these. To aid convergence, the command allows the user to change the method for deriving the starting values for optimization, the optimization algorithm, and the parameterization of the IOU process. We also provide a predict command to generate predictions under the model. We illustrate xtiou and predict with an example of repeated biomarker measurements from HIV-positive patients.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug16:09. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.