IDEAS home Printed from https://ideas.repec.org/p/boc/usug15/04.html
   My bibliography  Save this paper

Efficient multivariate-normal distribution calculations in Stata

Author

Listed:
  • Michael J. Grayling

    (MRC Biostatistics Unit Cambridge, UK)

  • Adrian Mander

    (MRC Biostatistics Unit Cambridge, UK)

Abstract

The normal distribution holds significant importance in statistics. Much gathered real world data either is, or is assumed to be, normally distributed. Today though, a considerable amount of statistical analysis performed is not univariate, but multivariate in nature. Consequently, the multivariate normal distribution is of increasing importance. However, the complexity of this distribution makes computational analysis almost certainly necessary, and thus much research has been conducted in to developing efficient algorithms for its numerical analysis. Here we discuss our implementation of a certain choice of algorithm in Mata that allows its distribution function and equi-coordinate quantiles to be identified seamlessly for any choice of location vector and positive semi-definite covariance matrix. Moreover, we detail new commands to efficiently compute its density and to generate pseudo-random variables. We then discuss the performance of our commands relative to the presently available alternatives, and present how they provide greater generalisation and improved computational speed. Finally, through the example of designing a group sequential clinical trial, we demonstrate how our commands can be used easily to solve real-world problems facing Stata users.

Suggested Citation

  • Michael J. Grayling & Adrian Mander, 2015. "Efficient multivariate-normal distribution calculations in Stata," United Kingdom Stata Users' Group Meetings 2015 04, Stata Users Group.
  • Handle: RePEc:boc:usug15:04
    as

    Download full text from publisher

    File URL: http://repec.org/usug2015/grayling_uksug15.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Beaumais & Apolline NiƩrat, 2019. "Exploring in-depth joint pro-environmental behaviors: a multivariate ordered probit approach," Working Papers hal-02361390, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug15:04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.