IDEAS home Printed from https://ideas.repec.org/p/boc/usug10/04.html
   My bibliography  Save this paper

Simulation of "forward-backward" multiple-imputation technique in longitudinal clinical dataset

Author

Listed:
  • Catherine Welch

    (Department of Primary Care & Population Health, University College London)

  • Irene Petersen

    (Department of Primary Care & Population Health, University College London)

  • James Carpenter

    (Medical Statistics Unit, London School of Hygiene and Tropical Medicine)

Abstract

Most standard missing-data techniques have been designed for cross-sectional data. A "forward-backward" multiple-imputation algorithm has been developed to impute missing values in longitudinal data (Nevalainen, Kenward, and Virtanen, 2009, Statistics in Medicine 28: 36577-3669) This technique will be applied to The Health Improvement Network (THIN), a longitudinal primary-care database to impute variables associated with incidence of cardiovascular disease (CVD). A sample of 483 patients was extracted from THIN to test the performance of the algorithm before it was applied to the whole dataset. This dataset included individuals with information available on age, sex, deprivation quintile, height, weight, systolic blood pressure, and total serum cholesterol for each age from 65 to 69 years. CVD was identified if the patient was diagnosed with one of a predefined list of conditions at any of these ages. They were then considered to have CVD at each subsequent age. In this sample, measurements of weight, systolic blood pressure, and cholesterol were replaced with missing values such that the probability that data are missing decreases as age increases; i.e., the data are missing at random and the overall percentage of missing data is equivalent to that in THIN. We then applied the forward-backward algorithm, which imputes values at each time point by using measurements before and after the one of interest and updates values sequentially. Ten complete datasets were created. A Poisson regression was performed using data in each dataset, and estimates were combined using Rubin's rules. These steps were repeated 200 times and the coefficients were averaged. I will explain in more detail how the forward-backward algorithm works and also will demonstrate the results following multiple imputation using this algorithm. I will compare these results with the analysis before data were replaced with missing values and a complete case analysis to assess the performance of the algorithm.

Suggested Citation

  • Catherine Welch & Irene Petersen & James Carpenter, 2010. "Simulation of "forward-backward" multiple-imputation technique in longitudinal clinical dataset," United Kingdom Stata Users' Group Meetings 2010 04, Stata Users Group.
  • Handle: RePEc:boc:usug10:04
    as

    Download full text from publisher

    File URL: http://repec.org/usug2010/UKSUG10.Welch.ppt
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug10:04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.