IDEAS home Printed from https://ideas.repec.org/p/boc/scon20/6.html
   My bibliography  Save this paper

Applications of generalized structural equation modeling for enhanced credit risk management

Author

Listed:
  • Jose Canals-Cerda

    (Federal Reserve Bank of Philadelphia)

Abstract

The integration of the generalized structural equation modeling (GSEM) framework to widely used statistical packages like Stata offers significant opportunities for credit risk management. GSEM techniques bring to bear a modular and all-inclusive approach to statistical model building. We illustrate the “game changing” potential of the GSEM framework with an application to credit risk stress testing and loss forecasting for a representative portfolio of mortgages originated over the past 20 years. Specifically, we analyze a representative dataset of USA mortgage loans originated over the past 20 years that includes detailed loan-level information on monthly loan performance and other relevant loan and borrower characteristics. Our analysis and discussion illustrates how GSEM techniques can significantly impact every aspect of a model-driven risk management framework, from model development, documentation, and validation to model production, as well as to other, perhaps less obvious, aspects of model building like model risk management, enhanced team collaboration, minimization of proliferation of disparate datasets within projects, and the promotion of a holistic and collaborative approach to model building.

Suggested Citation

  • Jose Canals-Cerda, 2020. "Applications of generalized structural equation modeling for enhanced credit risk management," 2020 Stata Conference 6, Stata Users Group.
  • Handle: RePEc:boc:scon20:6
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/repec/scon2020/us20_Canals-Cerda.pdf
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:scon20:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.