IDEAS home Printed from https://ideas.repec.org/p/boc/scon18/22.html
   My bibliography  Save this paper

Analysis of surgical outcomes in clustered data: Approaches and interpretation

Author

Listed:
  • Dmitry Tumin

    (The Ohio State University, Nationwide Children's Hospital)

Abstract

Observational clinical studies increasingly use large and complex datasets representing patients who are clustered by provider, institution, or geographic location. Previous research on surgical outcomes (including morbidity, mortality, and subsequent healthcare utilization) has highlighted provider technique and experience, center volume-outcomes relationships, and geographical disparities in the quality of surgical care as important applications of clustered data analysis. In regression models, the nonindependence of outcomes within each cluster may be handled through cluster–robust standard errors or introduction of cluster-level fixed or random effects. However, clinical studies rarely articulate and occasionally misinterpret the rationale for applying these methods. I review recent literature on surgical outcomes to describe how the choice of approach may be influenced by the intended comparison among clusters, theoretical expectation of specific cluster-level factors influencing patient outcomes, and clinical importance of residual variation among clusters. I then present an example from transplant surgery where the primary contribution of a mixed-effects model is made by interpreting residual county-level variation in posttransplant survival.

Suggested Citation

  • Dmitry Tumin, 2018. "Analysis of surgical outcomes in clustered data: Approaches and interpretation," 2018 Stata Conference 22, Stata Users Group.
  • Handle: RePEc:boc:scon18:22
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/repec/scon2018/columbus18_Tumin.pptx
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:scon18:22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.