IDEAS home Printed from https://ideas.repec.org/p/boc/neur24/13.html
   My bibliography  Save this paper

Multivariate random-effects meta-analysis for sparse data using smvmeta

Author

Listed:
  • Chris Rose

    (Norwegian Institute of Public Health)

Abstract

Multivariate meta-analysis is used to synthesize estimates of multiple quantities (“effect sizes”), such as risk factors or treatment effects, accounting for correlation and typically also heterogeneity. In the most general case, estimation can be intractable if data are sparse (for example, many risk factors but few studies) because the number of model parameters that must be estimated scales quadratically with the number of effect sizes. I will present a new meta-analysis model and Stata command, smvmeta, that make estimation tractable by modeling correlation and heterogeneity in a low-dimensional space via random projection and that provide more precise estimates than meta-regression (a reasonable alternative model that could be used when data are sparse). I will explain how to use smvmeta to analyze data from a recent meta-analysis of 23 risk factors for pain after total knee arthroplasty.

Suggested Citation

  • Chris Rose, "undated". "Multivariate random-effects meta-analysis for sparse data using smvmeta," Northern European Stata Conference 2024 13, Stata Users Group.
  • Handle: RePEc:boc:neur24:13
    as

    Download full text from publisher

    File URL: http://repec.org/neur2024/Northern_Europe24_Rose.pdf
    File Function: presentation materials
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:neur24:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.