IDEAS home Printed from https://ideas.repec.org/p/boc/lsug22/09.html
   My bibliography  Save this paper

Distributed Lag Non-Linear Models (DLNMs) in Stata

Author

Listed:
  • Aurelio Tobias

    (Spanish Research Council (CSIC), Barcelona, Spain)

  • Ben Armstrong

    (Spanish Research Council (CSIC), Barcelona, Spain)

  • Antonio Gasparrini

    (Spanish Research Council (CSIC), Barcelona, Spain)

Abstract

The distributed lag non-linear models (DLNMs) represent a modelling framework to flexibly describe associations showing potentially non-linear and delayed effects in time-series data. This methodology rests on the definition of a crossbasis, a bi-dimensional functional space combining two sets of basis functions, which specify the relationships in the dimensions of predictor and lags, respectively. DLNMs have been widely used in environmental epidemiology to investigate the short-term associations between environmental exposures, such as weather variables or air pollution, and health outcomes, such as mortality counts or disease-specific hospital admissions. We implemented the DLNMs framework in Stata through the crossbasis command to generate the basis variables that can be fitted in a broad range of regression models. In addition, the post estimation commands crossbgraph and crossbslices allow interpreting the results, emphasizing graphical representation, after the regression model fit. We present an overview of the capabilities of these new user-developed commands and describe the practical steps to fit and interpret DLNMs with an example of real data to represent the relationship between temperature and mortality in London during the period 2002-2006.

Suggested Citation

  • Aurelio Tobias & Ben Armstrong & Antonio Gasparrini, 2022. "Distributed Lag Non-Linear Models (DLNMs) in Stata," London Stata Conference 2022 09, Stata Users Group.
  • Handle: RePEc:boc:lsug22:09
    as

    Download full text from publisher

    File URL: http://repec.org/lsug2022/uk2022_tobias.pptx
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:lsug22:09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.