IDEAS home Printed from https://ideas.repec.org/p/boc/lsug22/08.html
   My bibliography  Save this paper

Bias Adjusted Three Step Latent Class Analysis Using R and the gsem Command in Stata

Author

Listed:
  • Daniel Tompsett

    (University College London)

  • Bianca De Stavola

    (University College London)

Abstract

In this presentation we will describe a means to perform bias adjusted latent class analysis using three step methodology. This method is often performed using MPLUS, LATENT GOLD, or specific functions in Stata. Here we will describe a novel means to perform this analysis using the poLCA package in R to perform the first two steps, and the gsem command in Stata to perform the third step. This methodology is applied to a case study involving performing causal analysis by integrating inverse probability of treatment weights into the methodology. We will also demonstrate how to obtain estimates of the average causal effect of exposure on a latent class using the margins command with robust standard errors. Our aim is to broaden awareness of three step latent class methods and causal analysis, and offer means to perform this methodology for users of R, for which there currently is little software available.

Suggested Citation

  • Daniel Tompsett & Bianca De Stavola, 2022. "Bias Adjusted Three Step Latent Class Analysis Using R and the gsem Command in Stata," London Stata Conference 2022 08, Stata Users Group.
  • Handle: RePEc:boc:lsug22:08
    as

    Download full text from publisher

    File URL: http://repec.org/lsug2022/uk2022_tompsett.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:lsug22:08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.