IDEAS home Printed from https://ideas.repec.org/p/boc/lsug22/04.html
   My bibliography  Save this paper

Bayesian multilevel modeling

Author

Listed:
  • Yulia Marchenko

    (StataCorp)

Abstract

In multilevel or hierarchical data, which include longitudinal, cross-sectional, and repeated-measures data, observations belong to different groups. Groups may represent different levels of hierarchy such as hospitals, doctors nested within hospitals, and patients nested within doctors nested within hospitals. Multilevel models incorporate group-specific effects in the regression model and assume that they vary randomly across groups according to some a priori distribution, commonly a normal distribution. This assumption makes multilevel models natural candidates for Bayesian analysis. Bayesian multilevel models additionally assume that other model parameters such as regression coefficients and variance components — variances of group-specific effects — are also random. ​ In this presentation, I will discuss some of the advantages of Bayesian multilevel modeling over the classical frequentist estimation. I will cover some basic random-intercept and random-coefficients modeling using the bayes: mixed command. I will then demonstrate more advanced model fitting by using the new-in-Stata-17 multilevel syntax of the bayesmh command, including multivariate and nonlinear multilevel models.

Suggested Citation

  • Yulia Marchenko, 2022. "Bayesian multilevel modeling," London Stata Conference 2022 04, Stata Users Group.
  • Handle: RePEc:boc:lsug22:04
    as

    Download full text from publisher

    File URL: http://repec.org/lsug2022/uk2022_marchenko.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:lsug22:04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.