IDEAS home Printed from https://ideas.repec.org/p/boc/isug08/04.html
   My bibliography  Save this paper

Parametric and semiparametric estimation of ordered response models with sample selection and individual-specific thresholds

Author

Listed:
  • Giuseppe De Luca

    (ISFOL)

  • Valeria Perotti

    (ISFOL)

  • Claudio Rossetti

    (Università di Roma “Tor Vergata”)

Abstract

This paper provides a set of new Stata commands for parametric and semiparametric estimation of an extended version of ordered response models that accounts for both sample selection problems and heterogeneity in the thresholds for the latent variable. The standard estimator of ordered response models is therefore generalized along three directions. First, we account for the presence of endogenous selectivity effects that may lead to inconsistent estimates of the model parameters. Second, we control for both observed and unobserved heterogeneity in response scales by allowing the thresholds to depend on a set of covariates and a random individual effect. Finally, we consider two alternative specifications of the model, one parametric and one semiparametric. In the former, the error terms are assumed to follow a multivariate Gaussian distribution and the model parameters are estimated via maximum likelihood. In the latter, the distribution function of the error terms is instead approximated by following Gallant and Nychka (1997), and the model parameters are estimated via pseudo–maximum likelihood. After discussing identification and estimation issues, we present an empirical application using the second wave of the Survey on Health, Ageing and Retirement in Europe (SHARE). Specifically, we estimate an ordered response model for self-reported health on different domains by accounting for both sample selection bias due to survey nonresponse and reporting bias in the self-assessments of health.

Suggested Citation

  • Giuseppe De Luca & Valeria Perotti & Claudio Rossetti, 2009. "Parametric and semiparametric estimation of ordered response models with sample selection and individual-specific thresholds," Italian Stata Users' Group Meetings 2008 04, Stata Users Group.
  • Handle: RePEc:boc:isug08:04
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/repec/isug2008/de_luca_2008.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:isug08:04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.