IDEAS home Printed from https://ideas.repec.org/p/boc/dsug23/10.html
   My bibliography  Save this paper

Power boost or source of bias? Monte Carlo evidence on ML covariate adjustment in randomized trials in education

Author

Listed:
  • Lukas Fervers

    (University of Cologne and Leibniz-Centre for Life-Long Learning)

Abstract

Statistical theory makes ambiguous predictions about covariate adjustment in randomized trials. While proponents highlight possible efficiency gains, opponents point to possible finite-sample bias, a loss of precision in the case of many and weak covariates, and as the increasing danger of false-positive results due to repeated model specification. This theoretical reasoning suggests that machine learning (variable selection) methods may be promising tools to keep the advantages of covariate adjustment, while simultaneously protecting against its downsides. In this presentation, I rely on recent developments of machine learning methods for causal effects and their implementation in Stata to assess the performance of ML methods in randomized trials. I rely on real-world data and simulate treatment effects on a wide range of different data structures, including different outcomes and sample sizes. (Preliminary) results suggests that ML adjusted estimates are unbiased and show considerable efficiency gains compared with unadjusted analysis. The results are fairly similar between different data structures used and robust to the choice of tuning parameters of the ML estimators. These results tend to support the more optimistic view on covariate adjustment and highlight the potential of ML methods in this field.

Suggested Citation

  • Lukas Fervers, 2023. "Power boost or source of bias? Monte Carlo evidence on ML covariate adjustment in randomized trials in education," German Stata Conference 2023 10, Stata Users Group.
  • Handle: RePEc:boc:dsug23:10
    as

    Download full text from publisher

    File URL: http://repec.org/dsug2023/germany23_Fervers.pdf
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:dsug23:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.