IDEAS home Printed from https://ideas.repec.org/p/boc/dsug14/06.html
   My bibliography  Save this paper

Modeling interactions in count-data regression: Principles and implementation in Stata

Author

Listed:
  • Heinz Leitgöb

    (University of Linz, Austria)

Abstract

During the past decades, count-data models (in particular, Poisson and negative-binomial-based regression models) have gained relevance in empirical social research. While identifying and interpreting main effects is relatively straightforward for this class of models, the integration of interactions between predictors proves to be complex. As a consequence of the exponential mean function implemented in count-data models (which restricts the possible range of the conditional expected count to nonnegative values), the coefficient of the product term variable (generated by the predictors constituting the interaction) does not—in contrast to the linear model—fully represent the underlying interaction effect. Further, the interaction effect is allowed to vary between individuals and can be divided into two components: a model-inherent interaction effect and a product-term-induced interaction effect. We will derive the total interaction effect for the Poisson and negative binomial models by following a method developed by Norton and Ai (2003) for binary logit and probit models. Further, we will decompose the model-inherent and the product-term-induced interaction effect, discuss their substantive meaning, and provide delta-method standard errors for the respective effects. Finally, we will provide an approach for the estimation and graphical representation of these effects in Stata.

Suggested Citation

  • Heinz Leitgöb, 2014. "Modeling interactions in count-data regression: Principles and implementation in Stata," German Stata Users' Group Meetings 2014 06, Stata Users Group.
  • Handle: RePEc:boc:dsug14:06
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/dsug2014/de14_leitgoeb.pdf
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:dsug14:06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.