Author
Abstract
The logit model is a widely used regression technique in social research. However, the use and interpretation of coefficients from logit models have proven contentious. Problems arise because the mean and the variance of discrete variables cannot be separated. Logit coefficients are identified relative to an arbitrary scale, which makes the coefficients difficult both to interpret and to compare across groups or samples. Do differences in coefficients reflect true differences or differences in scales? This cross-sample comparison problem raises concerns for comparative research. However, we suggest a new correlation metric, derived from logit models, which gives new interpretation to the estimates of logit models (log odds-ratios). The metric leads the way to a reorientation of the use of logit models, because it helps to clarify what logit coefficients are and how and when logit coefficients can (or cannot) be used in comparative research. The metric recovers the correlation between a predictor variable x and a continuous latent outcome variable y* assumed to underlie a binary observed outcome y. This metric is truly invariant to differences in the marginal distributions of x and y* across groups or samples, making it suitable for situations met in real applications in comparative research. Our derivations also extend to the probit and to ordered and multinomial models. The new metric is implemented in the Stata command nlcorr.
Suggested Citation
Kristian B. Karlson, 2011.
"Correlation metric,"
German Stata Users' Group Meetings 2011
07, Stata Users Group.
Handle:
RePEc:boc:dsug11:07
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:dsug11:07. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.