Author
Listed:
- Elisavet Syriopoulou
(Karolinska Institutet)
Abstract
Mediation analysis can be applied to investigate the role of a third variable (a so-called mediator) on the pathway between an exposure and the outcome of interest through an effect decomposition. For example, it would allow exploring if and how much of the socioeconomic disparities observed in cancer survival can be explained by differences in stage at diagnosis. Here we describe an extension of mediation analysis within the relative survival framework. Relative survival is a commonly used measure in cancer epidemiology that estimates net survival, and its incorporation into mediation analysis allows focusing on disease-related survival differences as opposed to all-cause survival differences. The latter is the result of both cancer-related and other factors that are more challenging to identify. Using mediation analysis in relative survival and counterfactual survival functions, we can partition the difference in marginal relative survival between exposure groups into the difference due to a mediator (such as stage at diagnosis, which has an indirect effect) and the remaining difference (due to the exposure, a direct effect). The proportion mediated can also be obtained together with contrasts of all-cause survival differences as well as the number of “avoidable deaths” under interventions aimed at modifiable risk factors. We illustrate how all of these measures of interest can be estimated and introduce certain assumptions required to do so. To that end, we fit a flexible parametric survival model for the survival outcome using the stpm3 command and a separate multinomial logistic model for the mediator. We then combine these models using a regression standardization approach, implemented within the standsurv command, with uncertainty estimated using a parametric bootstrap procedure. We will illustrate the approach in practice using an example on survival differences in rectal cancer survival by income groups in Sweden. Finally, the methods that we developed could be applied in other disease areas as well, where exploring the underlying mechanisms for disease-specific survival differences is of interest. Mediation analysis in the relative survival framework provides thus a valuable tool that has the potential to improve our understanding of factors driving health disparities and informing policies aimed at modifiable mediators (risk factors).
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:biep24:02. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.