IDEAS home Printed from https://ideas.repec.org/p/bis/biswps/1215.html
   My bibliography  Save this paper

CB-LMs: language models for central banking

Author

Listed:
  • Leonardo Gambacorta
  • Byeungchun Kwon
  • Taejin Park
  • Pietro Patelli
  • Sonya Zhu

Abstract

We introduce central bank language models (CB-LMs) - specialised encoder-only language models retrained on a comprehensive corpus of central bank speeches, policy documents and research papers. We show that CB-LMs outperform their foundational models in predicting masked words in central bank idioms. Some CB-LMs not only outperform their foundational models, but also surpass state-of-the-art generative Large Language Models (LLMs) in classifying monetary policy stance from Federal Open Market Committee (FOMC) statements. In more complex scenarios, requiring sentiment classification of extensive news related to the US monetary policy, we find that the largest LLMs outperform the domain-adapted encoder-only models. However, deploying such large LLMs presents substantial challenges for central banks in terms of confidentiality, transparency, replicability and cost-efficiency.

Suggested Citation

  • Leonardo Gambacorta & Byeungchun Kwon & Taejin Park & Pietro Patelli & Sonya Zhu, "undated". "CB-LMs: language models for central banking," BIS Working Papers 1215, Bank for International Settlements.
  • Handle: RePEc:bis:biswps:1215
    as

    Download full text from publisher

    File URL: https://www.bis.org/publ/work1215.pdf
    File Function: Full PDF document
    Download Restriction: no

    File URL: https://www.bis.org/publ/work1215.htm
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuriy Gorodnichenko & Tho Pham & Oleksandr Talavera, 2023. "The Voice of Monetary Policy," American Economic Review, American Economic Association, vol. 113(2), pages 548-584, February.
    2. Ehrmann, Michael & Talmi, Jonathan, 2020. "Starting from a blank page? Semantic similarity in central bank communication and market volatility," Journal of Monetary Economics, Elsevier, vol. 111(C), pages 48-62.
    3. Husted, Lucas & Rogers, John & Sun, Bo, 2020. "Monetary policy uncertainty," Journal of Monetary Economics, Elsevier, vol. 115(C), pages 20-36.
    4. Azzimonti, Marina, 2018. "Partisan conflict and private investment," Journal of Monetary Economics, Elsevier, vol. 93(C), pages 114-131.
    5. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    6. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    7. Gerard Hoberg & Gordon Phillips, 2016. "Text-Based Network Industries and Endogenous Product Differentiation," Journal of Political Economy, University of Chicago Press, vol. 124(5), pages 1423-1465.
    8. Tarek A. Hassan & Stephan Hollander & Laurence Van Lent & Ahmed Tahoun, 2024. "The Global Impact of Brexit Uncertainty," Journal of Finance, American Finance Association, vol. 79(1), pages 413-458, February.
    9. Cho, Deaha & Han, Yoonshin & Oh, Joonseok & Rogantini Picco, Anna, 2020. "Optimal Monetary Policy and Uncertainty Shocks," Dynare Working Papers 61, CEPREMAP.
    10. Gerard Hoberg & Gordon Phillips, 2010. "Product Market Synergies and Competition in Mergers and Acquisitions: A Text-Based Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 23(10), pages 3773-3811, October.
    11. Curti, Filippo & Kazinnik, Sophia, 2023. "Let's face it: Quantifying the impact of nonverbal communication in FOMC press conferences," Journal of Monetary Economics, Elsevier, vol. 139(C), pages 110-126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Husted, Lucas & Rogers, John & Sun, Bo, 2020. "Monetary policy uncertainty," Journal of Monetary Economics, Elsevier, vol. 115(C), pages 20-36.
    2. Liu Hong & Tianpeng Zhou, 2024. "Firm-level political risk and the firm’s trade credit extension," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 48(3), pages 857-888, September.
    3. Arbatli Saxegaard, Elif C. & Davis, Steven J. & Ito, Arata & Miake, Naoko, 2022. "Policy uncertainty in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 64(C).
    4. Fadda, Pietro & Hanifi, Rayane & Istrefi, Klodiana & Penalver, Adrian, 2022. "Central Bank Communication of Uncertainty," CEPR Discussion Papers 17728, C.E.P.R. Discussion Papers.
    5. ITO Arata & SATO Masahiro & OTA Rui, 2024. "Content-based Metric on Monetary Policy Uncertainty by Using Large Language Models," Discussion papers 24080, Research Institute of Economy, Trade and Industry (RIETI).
    6. Abiad, Abdul & Qureshi, Irfan A., 2023. "The macroeconomic effects of oil price uncertainty," Energy Economics, Elsevier, vol. 125(C).
    7. Philip Barrett & Mariia Bondar & Sophia Chen & Mali Chivakul & Deniz Igan, 2024. "Pricing protest: the response of financial markets to social unrest," Review of Finance, European Finance Association, vol. 28(4), pages 1419-1450.
    8. Chris Florackis & Christodoulos Louca & Roni Michaely & Michael Weber, 2023. "Cybersecurity Risk," The Review of Financial Studies, Society for Financial Studies, vol. 36(1), pages 351-407.
    9. Azqueta-Gavaldon, Andres, 2023. "Political referenda and investment: Evidence from Scotland," European Journal of Political Economy, Elsevier, vol. 80(C).
    10. D'Mello, Ranjan & Toscano, Francesca, 2020. "Economic policy uncertainty and short-term financing: The case of trade credit," Journal of Corporate Finance, Elsevier, vol. 64(C).
    11. Martin Baumgaertner & Johannes Zahner, 2021. "Whatever it takes to understand a central banker - Embedding their words using neural networks," MAGKS Papers on Economics 202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    12. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
    13. Chun Lu & James Routledge & Kam C. Chan & Tongxia Li, 2023. "Policy uncertainty and inventory behavior: Evidence from the US manufacturing sector," Economics and Politics, Wiley Blackwell, vol. 35(3), pages 919-948, November.
    14. Born, Benjamin & Dovern, Jonas & Enders, Zeno, 2023. "Expectation dispersion, uncertainty, and the reaction to news," European Economic Review, Elsevier, vol. 154(C).
    15. Gu, Xin & Zhu, Zixiang & Yu, Minli, 2021. "The macro effects of GPR and EPU indexes over the global oil market—Are the two types of uncertainty shock alike?," Energy Economics, Elsevier, vol. 100(C).
    16. Istrefi, Klodiana & Odendahl, Florens & Sestieri, Giulia, 2023. "Fed communication on financial stability concerns and monetary policy decisions: Revelations from speeches," Journal of Banking & Finance, Elsevier, vol. 151(C).
    17. Dario Caldara & Chiara Scotti & Molin Zhong, 2021. "Macroeconomic and Financial Risks: A Tale of Mean and Volatility," International Finance Discussion Papers 1326, Board of Governors of the Federal Reserve System (U.S.).
    18. Chen, Chung-Chi & Huang, Yu-Lieh & Yang, Fang, 2024. "Semantics matter: An empirical study on economic policy uncertainty index," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1286-1302.
    19. Costantini, Mauro & Sousa, Ricardo M., 2022. "What uncertainty does to euro area sovereign bond markets: Flight to safety and flight to quality," Journal of International Money and Finance, Elsevier, vol. 122(C).
    20. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2021. "Economic drivers of commodity volatility: The case of copper," Resources Policy, Elsevier, vol. 73(C).

    More about this item

    Keywords

    large language models; gen AI; central banks; monetary policy analysis;
    All these keywords.

    JEL classification:

    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bis:biswps:1215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Fessler (email available below). General contact details of provider: https://edirc.repec.org/data/bisssch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.