IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/692.html
   My bibliography  Save this paper

Variational Inequalities and Smooth-Fit Principle for Singular Stochastic Control Problems in Hilbert Spaces

Author

Listed:
  • Federico, Salvatore

    (Center for Mathematical Economics, Bielefeld University)

  • Ferrari, Giorgio

    (Center for Mathematical Economics, Bielefeld University)

  • Riedel, Frank

    (Center for Mathematical Economics, Bielefeld University)

  • Röckner, Michael

    (Center for Mathematical Economics, Bielefeld University)

Abstract

We consider a class of infinite-dimensional singular stochastic control problems. These can be thought of as spatial monotone follower problems and find applications in spatial models of production and climate transition. Let $(D,\mathcal{M},\mu)$ be a finite measure space and consider the Hilbert space $H:=L^2(D,\mathcal{M},\mu; \mathbb{R})$. Let then $X$ be an $H$-valued stochastic process on a suitable complete probability space, whose evolution is determined through an SPDE driven by a self-adjoint linear operator $\mathcal{A}$ and affected by a cylindrical Brownian motion. The evolution of $X$ is controlled linearly via an $H$-valued control consisting of the direction and the intensity of action, a real-valued nondecreasing right-continuous stochastic process, adapted to the underlying filtration. The goal is to minimize a discounted convex cost-functional over an infinite time-horizon. By combining properties of semiconcave functions and techniques from viscosity theory, we first show that the value function of the problem $V$ is a $C^{1,Lip}(H)$-viscosity solution to the corresponding dynamic programming equation, which here takes the form of a variational inequality with gradient constraint. Then, by allowing the decision maker to choose only the intensity of the control and requiring that the given control direction $\hat{n}$ is an eigenvector of the linear operator $\mathcal{A}$, we establish that the directional derivative $V_{\hat{n}}$ is of class $C^1(H)$, hence a second-order smooth-fit principle in the controlled direction holds for $V$. This result is obtained by exploiting a connection to optimal stopping and combining results and techniques from convex analysis and viscosity theory.

Suggested Citation

  • Federico, Salvatore & Ferrari, Giorgio & Riedel, Frank & Röckner, Michael, 2024. "Variational Inequalities and Smooth-Fit Principle for Singular Stochastic Control Problems in Hilbert Spaces," Center for Mathematical Economics Working Papers 692, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:692
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2990509/2990510
    File Function: First Version, 2024
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alvarez, Luis H. R., 2000. "Singular stochastic control in the presence of a state-dependent yield structure," Stochastic Processes and their Applications, Elsevier, vol. 86(2), pages 323-343, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joachim Gahungu and Yves Smeers, 2012. "A Real Options Model for Electricity Capacity Expansion," RSCAS Working Papers 2012/08, European University Institute.
    2. Ferrari, Giorgio, 2018. "On a Class of Singular Stochastic Control Problems for Reflected Diffusions," Center for Mathematical Economics Working Papers 592, Center for Mathematical Economics, Bielefeld University.
    3. Pui Chan Lon & Mihail Zervos, 2011. "A Model for Optimally Advertising and Launching a Product," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 363-376, May.
    4. GAHUNGU, Joachim & SMEERS, Yves, 2011. "A real options model for electricity capacity expansion," LIDAM Discussion Papers CORE 2011044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Nuno M. Brites, 2022. "Optimal Harvesting of Stochastically Fluctuating Populations Driven by a Generalized Logistic SDE Growth Model," Mathematics, MDPI, vol. 10(17), pages 1-15, August.
    6. Salvatore Federico & Giorgio Ferrari & Patrick Schuhmann, 2019. "A Model for the Optimal Management of Inflation," Department of Economics University of Siena 812, Department of Economics, University of Siena.
    7. Federico, Salvatore & Ferrari, Giorgio & Schuhmann, Patrick, 2019. "A Model for the Optimal Management of Inflation," Center for Mathematical Economics Working Papers 624, Center for Mathematical Economics, Bielefeld University.
    8. Ferrari, Giorgio & Koch, Torben, 2018. "An optimal extraction problem with price impact," Center for Mathematical Economics Working Papers 603, Center for Mathematical Economics, Bielefeld University.
    9. Giorgio Ferrari & Torben Koch, 2018. "An Optimal Extraction Problem with Price Impact," Papers 1812.01270, arXiv.org.
    10. Zhuo Jin & George Yin & Chao Zhu, 2011. "Numerical Solutions of Optimal Risk Control and Dividend Optimization Policies under A Generalized Singular Control Formulation," Papers 1111.2584, arXiv.org.
    11. Ky Q. Tran & Bich T. N. Le & George Yin, 2022. "Harvesting of a Stochastic Population Under a Mixed Regular-Singular Control Formulation," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1106-1132, December.
    12. Alvarez E., Luis H.R. & Hening, Alexandru, 2022. "Optimal sustainable harvesting of populations in random environments," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 678-698.
    13. de Angelis, Tiziano & Ferrari, Giorgio, 2016. "Stochastic nonzero-sum games: a new connection between singular control and optimal stopping," Center for Mathematical Economics Working Papers 565, Center for Mathematical Economics, Bielefeld University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.