IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/580.html
   My bibliography  Save this paper

Robust Maximum Detection: Full Information Best Choice Problem under Multiple Priors

Author

Listed:
  • Obradović, Lazar

    (Center for Mathematical Economics, Bielefeld University)

Abstract

We consider a robust version of the full information best choice problem (Gilbert and Mosteller (1966)): there is ambiguity (represented by a set of priors) about the measure driving the observed process. We solve the problem under a very general class of multiple priors in the setting of Riedel (2009). As in the classical case, it is optimal to stop if the current observation is a running maximum that exceeds certain thresholds. We characterize the decreasing sequence of thresholds, as well as the (history dependent) minimizing measure. We introduce locally constant ambiguity neighborhood (LCAn) which has connections to coherent risk measures. Sensitivity analysis is performed using LCAn and exponential neighborhood from Riedel (2009).

Suggested Citation

  • Obradović, Lazar, 2018. "Robust Maximum Detection: Full Information Best Choice Problem under Multiple Priors," Center for Mathematical Economics Working Papers 580, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:580
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2916933/2916934
    File Function: First Version, 2018
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    2. Frank Riedel, 2009. "Optimal Stopping With Multiple Priors," Econometrica, Econometric Society, vol. 77(3), pages 857-908, May.
    3. Tatjana Chudjakow & Frank Riedel, 2013. "The best choice problem under ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 77-97, September.
    4. Lippman, Steven A & McCall, John J, 1976. "The Economics of Job Search: A Survey," Economic Inquiry, Western Economic Association International, vol. 14(3), pages 347-368, September.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Lippman, Steven A & McCall, John J, 1976. "The Economics of Job Search: A Survey: Part I," Economic Inquiry, Western Economic Association International, vol. 14(2), pages 155-189, June.
    7. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazar Obradović, 2020. "Robust best choice problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 435-460, December.
    2. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    3. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    4. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    5. Patrick Bei{ss}ner, 2012. "Coherent Price Systems and Uncertainty-Neutral Valuation," Papers 1202.6632, arXiv.org.
    6. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    7. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    8. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Dec 2024.
    9. Beißner, Patrick, 2013. "Coherent Price Systems and Uncertainty-Neutral Valuation," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80010, Verein für Socialpolitik / German Economic Association.
    10. Berend Roorda & J. M. Schumacher & Jacob Engwerda, 2005. "Coherent Acceptability Measures In Multiperiod Models," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 589-612, October.
    11. Vorbrink, Jörg, 2014. "Financial markets with volatility uncertainty," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 64-78.
    12. Romain Blanchard & Laurence Carassus, 2017. "Convergence of utility indifference prices to the superreplication price in a multiple-priors framework," Papers 1709.09465, arXiv.org, revised Oct 2020.
    13. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    14. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel & Heras, Antonio, 2015. "Optimal reinsurance under risk and uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 61-74.
    15. Samuel N. Cohen & Tanut Treetanthiploet, 2019. "Gittins' theorem under uncertainty," Papers 1907.05689, arXiv.org, revised Jun 2021.
    16. Daniel Bartl, 2016. "Conditional nonlinear expectations," Papers 1612.09103, arXiv.org, revised Mar 2019.
    17. Dilip B. Madan, 2016. "Benchmarking in two price financial markets," Annals of Finance, Springer, vol. 12(2), pages 201-219, May.
    18. repec:diw:diwwpp:dp1228 is not listed on IDEAS
    19. Daniel, Engelage, 2011. "Optimal stopping with dynamic variational preferences," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2042-2074, September.
    20. Beatrice Acciaio & Hans Föllmer & Irina Penner, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," Finance and Stochastics, Springer, vol. 16(4), pages 669-709, October.
    21. Balbás, Beatriz & Balbás, Raquel & Rodríguez de las Heras Pérez, Antonio, 2014. "Optimal reinsurance under risk and uncertainty," IC3JM - Estudios = Working Papers id-14-04, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.