IDEAS home Printed from https://ideas.repec.org/p/bep/uwabio/1049.html
   My bibliography  Save this paper

A Corrected Pseudo-score Approach for Additive Hazards Model With Longitudinal Covariates Measured With Error

Author

Listed:
  • Xiao Song

    (University of Washington)

  • Yijian Huang

    (Division of Public Health Sciences, Fred Hutchinson Cancer Research Center)

Abstract

In medical studies, it is often of interest to characterize the relationship between a time-to-event and covariates, not only time-independent but also time-dependent. Time-dependent covariates are generally measured intermittently and with error. Recent interests focus on the proportional hazards framework, with longitudinal data jointly modeled through a mixed effects model. However, approaches under this framework depend on the normality assumption of the error, and might encounter intractable numerical difficulties in practice. This motivates us to consider an alternative framework, that is, the additive hazards model, under which little has been done when time-dependent covariates are measured with error. We propose a simple corrected pseudo-score approach for the regression parameters with no assumptions on the distribution of the random effects and the error beyond those for the variance structure of the latter. The estimator has an explicit form and is shown to be consistent and asymptotically normal. We illustrate the method via simulations and by application to data from an HIV clinical trial.

Suggested Citation

  • Xiao Song & Yijian Huang, 2004. "A Corrected Pseudo-score Approach for Additive Hazards Model With Longitudinal Covariates Measured With Error," UW Biostatistics Working Paper Series 1049, Berkeley Electronic Press.
  • Handle: RePEc:bep:uwabio:1049
    Note: oai:bepress.com:uwbiostat-1049
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1049&context=uwbiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jane Xu & Scott L. Zeger, 2001. "Joint analysis of longitudinal data comprising repeated measures and times to events," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 375-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Song & Yijian Huang, 2005. "On Corrected Score Approach for Proportional Hazards Model with Covariate Measurement Error," Biometrics, The International Biometric Society, vol. 61(3), pages 702-714, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    2. Lei Liu & Xuelin Huang & John O'Quigley, 2008. "Analysis of Longitudinal Data in the Presence of Informative Observational Times and a Dependent Terminal Event, with Application to Medical Cost Data," Biometrics, The International Biometric Society, vol. 64(3), pages 950-958, September.
    3. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    4. Qi Gong & Douglas E. Schaubel, 2013. "Partly Conditional Estimation of the Effect of a Time-Dependent Factor in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 69(2), pages 338-347, June.
    5. Jaeun Choi & Jianwen Cai & Donglin Zeng, 2017. "Penalized Likelihood Approach for Simultaneous Analysis of Survival Time and Binary Longitudinal Outcome," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 190-216, November.
    6. Lei Liu & Xuelin Huang, 2009. "Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 65-81, February.
    7. Robert M. Elashoff & Gang Li & Ning Li, 2008. "A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types," Biometrics, The International Biometric Society, vol. 64(3), pages 762-771, September.
    8. Jiehuan Sun & Jose D. Herazo‐Maya & Philip L. Molyneaux & Toby M. Maher & Naftali Kaminski & Hongyu Zhao, 2019. "Regularized Latent Class Model for Joint Analysis of High‐Dimensional Longitudinal Biomarkers and a Time‐to‐Event Outcome," Biometrics, The International Biometric Society, vol. 75(1), pages 69-77, March.
    9. Hongyuan Cao & Jason P. Fine, 2021. "On the proportional hazards model with last observation carried forward covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 115-134, February.
    10. Joseph Ibrahim & Geert Molenberghs, 2009. "Missing data methods in longitudinal studies: a review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 1-43, May.
    11. Song Zhang & Peter Müller & Kim-Anh Do, 2010. "A Bayesian Semiparametric Survival Model with Longitudinal Markers," Biometrics, The International Biometric Society, vol. 66(2), pages 435-443, June.
    12. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    13. Sarah J. Ratcliffe & Wensheng Guo & Thomas R. Ten Have, 2004. "Joint Modeling of Longitudinal and Survival Data via a Common Frailty," Biometrics, The International Biometric Society, vol. 60(4), pages 892-899, December.
    14. Erning Li & Naisyin Wang & Nae-Yuh Wang, 2007. "Joint Models for a Primary Endpoint and Multiple Longitudinal Covariate Processes," Biometrics, The International Biometric Society, vol. 63(4), pages 1068-1078, December.
    15. Philipson, Pete & Hickey, Graeme L. & Crowther, Michael J. & Kolamunnage-Dona, Ruwanthi, 2020. "Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    16. Klaus Larsen, 2005. "The Cox Proportional Hazards Model with a Continuous Latent Variable Measured by Multiple Binary Indicators," Biometrics, The International Biometric Society, vol. 61(4), pages 1049-1055, December.
    17. repec:jss:jstsof:35:i09 is not listed on IDEAS
    18. Yingye Zheng & Patrick J. Heagerty, 2005. "Partly Conditional Survival Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 61(2), pages 379-391, June.
    19. Qing Cai & Mei‐Cheng Wang & Kwun Chuen Gary Chan, 2017. "Joint modeling of longitudinal, recurrent events and failure time data for survivor's population," Biometrics, The International Biometric Society, vol. 73(4), pages 1150-1160, December.
    20. Yifei Sun & Chiung-Yu Huang & Mei-Cheng Wang, 2017. "Nonparametric Benefit–Risk Assessment Using Marker Process in the Presence of a Terminal Event," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 826-836, April.
    21. Lei Liu & Robert A. Wolfe & Xuelin Huang, 2004. "Shared Frailty Models for Recurrent Events and a Terminal Event," Biometrics, The International Biometric Society, vol. 60(3), pages 747-756, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:uwabio:1049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.