IDEAS home Printed from https://ideas.repec.org/p/bep/mchbio/1025.html
   My bibliography  Save this paper

Multiple Imputation For Interval Censored Data With Auxiliary Variables

Author

Listed:
  • Chiu-Hsieh Hsu

    (Arizona Cancer Center)

  • Jeremy Taylor

    (University of Michigan)

  • Susan Murray

    (University of Michigan Biostatistics)

Abstract

We propose a nonparametric multiple imputation scheme, NPMLE imputation, for the analysis of interval censored survival data. Features of the method are that it converts interval-censored data problems to complete data or right censored data problems to which many standard approaches can be used, and the measures of uncertainty are easily obtained. In addition to the event time of primary interest, there are frequently other auxiliary variables that are associated with the event time. For the goal of estimating the marginal survival distribution, these auxiliary variables may provide some additional information about the event time for the interval censored observations. We extend the imputation methods to incorporate information from auxiliary variables with potentially complex structures. To conduct the imputation, we use a working failure-time proportional hazards model to define an imputing risk set for each censored observations. The imputation schemes consist of using the data in the imputing risk set to create an exact event time for each interval censored observation. In simulation studies we show that the use of multiple imputation methods can improve the efficiency of estimators and reduce the effect of missing visits when compared to simpler approaches. We apply the approach to cytomegalovirus shedding data from an AIDS clinical trial, in which CD4 count is the auxiliary variable.

Suggested Citation

  • Chiu-Hsieh Hsu & Jeremy Taylor & Susan Murray, 2004. "Multiple Imputation For Interval Censored Data With Auxiliary Variables," The University of Michigan Department of Biostatistics Working Paper Series 1025, Berkeley Electronic Press.
  • Handle: RePEc:bep:mchbio:1025
    Note: oai:bepress.com:umichbiostat-1025
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1025&context=umichbiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel F. Heitjan & Roderick J. A. Little, 1991. "Multiple Imputation for the Fatal Accident Reporting System," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(1), pages 13-29, March.
    2. Taylor, Jeremy M. G. & Murray, Susan & Hsu, Chiu-Hsieh, 2002. "Survival estimation and testing via multiple imputation," Statistics & Probability Letters, Elsevier, vol. 58(3), pages 221-232, July.
    3. Wei Pan, 2000. "A Multiple Imputation Approach to Cox Regression with Interval-Censored Data," Biometrics, The International Biometric Society, vol. 56(1), pages 199-203, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xinyan & Sun, Jianguo, 2010. "Regression analysis of clustered interval-censored failure time data with informative cluster size," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1817-1823, July.
    2. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    3. Chenyang Gu & Roee Gutman, 2017. "Combining item response theory with multiple imputation to equate health assessment questionnaires," Biometrics, The International Biometric Society, vol. 73(3), pages 990-998, September.
    4. Shen, Pao-sheng, 2015. "Conditional MLE for the proportional hazards model with left-truncated and interval-censored data," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 164-171.
    5. Yang-Jin Kim, 2014. "Regression analysis of recurrent events data with incomplete observation gaps," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1619-1626, July.
    6. Prabhashi W. Withana Gamage & Monica Chaudari & Christopher S. McMahan & Edwin H. Kim & Michael R. Kosorok, 2020. "An extended proportional hazards model for interval-censored data subject to instantaneous failures," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 158-182, January.
    7. Chia-Ning Wang & Roderick Little & Bin Nan & Siobán D. Harlow, 2011. "A Hot-Deck Multiple Imputation Procedure for Gaps in Longitudinal Recurrent Event Histories," Biometrics, The International Biometric Society, vol. 67(4), pages 1573-1582, December.
    8. Patrick Lloyd‐Smith, 2021. "The economic benefits of recreation in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 54(4), pages 1684-1715, November.
    9. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    10. Chen, Ling & Sun, Jianguo, 2010. "A multiple imputation approach to the analysis of interval-censored failure time data with the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1109-1116, April.
    11. Schenker, Nathaniel & Taylor, Jeremy M. G., 1996. "Partially parametric techniques for multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 22(4), pages 425-446, August.
    12. Prabhashi W. Withana Gamage & Christopher S. McMahan & Lianming Wang, 2023. "A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 188-212, January.
    13. Yang-Jin Kim, 2006. "Regression Analysis of Doubly Censored Failure Time Data with Frailty," Biometrics, The International Biometric Society, vol. 62(2), pages 458-464, June.
    14. Chaton, Corinne & Gouraud, Alexandre, 2020. "Simulation of fuel poverty in France," Energy Policy, Elsevier, vol. 140(C).
    15. Kwon, Tae Yeon & Park, Yousung, 2015. "A new multiple imputation method for bounded missing values," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 204-209.
    16. Chiu-Hsieh Hsu & Jeremy Taylor & Susan Murray, 2004. "Survival Analysis USing Auxiliary Variables Via Nonparametric Multiple Imputation," The University of Michigan Department of Biostatistics Working Paper Series 1026, Berkeley Electronic Press.
    17. repec:jss:jstsof:45:i02 is not listed on IDEAS
    18. Taylor, Jeremy M. G. & Murray, Susan & Hsu, Chiu-Hsieh, 2002. "Survival estimation and testing via multiple imputation," Statistics & Probability Letters, Elsevier, vol. 58(3), pages 221-232, July.
    19. Diane C. Lestina & Michael Greene & Robert B. Voas & Joann Wells, 1999. "Sampling Procedures and Survey Methodologies for the 1996 Survey with Comparisons to Earlier National Roadside Surveys," Evaluation Review, , vol. 23(1), pages 28-46, February.
    20. Wenqing Jiang & Jiangjie Zhou & Baosheng Liang, 2023. "An Improved Dunnett’s Procedure for Comparing Multiple Treatments with a Control in the Presence of Missing Observations," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    21. Gabriele B. Durrant & Chris Skinner, 2006. "Using data augmentation to correct for non‐ignorable non‐response when surrogate data are available: an application to the distribution of hourly pay," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 605-623, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:mchbio:1025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.