IDEAS home Printed from https://ideas.repec.org/p/bdr/borrec/1296.html
   My bibliography  Save this paper

Instantaneous Inflation as a Predictor of Inflation

Author

Listed:
  • Wilmer Martínez-Rivera
  • Edgar Caicedo-García
  • Juan Bonilla-Pérez

Abstract

This article studies the relationship between instantaneous and year-on-year inflation and the benefit of the forecast performance using instantaneous as a predictor. Instantaneous inflation is a transformation of year-on-year inflation, assigning different weights to each month of the Consumer Price Index (CPI) used to calculate the year-on-year inflation. We study the relationship using the Coincident Profile, which allows us to determine whether instantaneous inflation is coincident or anticipates the dynamic of year-on-year inflation. This finding establishes the lag order of the VAR, VECM, and ARIMAX models. Once we fit these models, we forecast year-on-year inflation and evaluate the predictive capacity. We found that instantaneous inflation helps to improve the forecast performance, beating the performance of an ARIMA model and more complex models that use a large set of predictors in several evaluation periods in the near and medium term.We developed three empirical exercises using data from Colombia, the United States, and the United Kingdom to evaluate this approach; in the three cases, we found betterment using instantaneous inflation as a predictor. **** RESUMEN: En este documento estudiamos la relación entre la inflación instantánea y la inflación anual y las ventajas de incluir la inflación instantánea como predictor en el desempeño de pronóstico de la inflación anual. La inflación instantánea ofrece una perspectiva más dinámica sobre la inflación, asignando pesos variables al Índice de Precios al Consumidor (IPC) en los usados para el cálculo de la inflación anual. Nosotros estudiamos la relación por medio del Perfil Coincidente, el cual permite establecer si la inflación instantánea y anual son contemporáneos o si una antecede la dinámica de la otra. Este hallazgo es usado para establecer el orden autorregresivo de modelos VAR, VECM y ARIMAX. Una vez estos modelos son ajustados, pronosticamos la inflación anual y evaluamos su capacidad predictiva. Nosotros encontramos que la inflación instantánea ayuda a mejorar los pronósticos de la inflación anual mejorando el desempeño de modelos como el ARIMA y modelos más complejos que incluyen un conjunto amplio de predictores a horizontes de corto y mediano plazo. Nosotros desarrollamos tres ejercicios empíricos para evaluar la metodología propuesta incluyendo datos para Colombia, Estados Unidos y Reino Unido. Los resultados de la evaluación de pronósticos en los tres casos muestran que la inflación instantánea como predictor ayuda a mejorar los pronósticos de la inflación anual.

Suggested Citation

  • Wilmer Martínez-Rivera & Edgar Caicedo-García & Juan Bonilla-Pérez, 2025. "Instantaneous Inflation as a Predictor of Inflation," Borradores de Economia 1296, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:1296
    DOI: 10.32468/be.1296
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/be.1296
    Download Restriction: no

    File URL: https://libkey.io/10.32468/be.1296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martínez, Wilmer & Nieto, Fabio H. & Poncela, Pilar, 2016. "Choosing a dynamic common factor as a coincident index," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 89-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    2. Rahman, Abdul & Khan, Muhammad Arshad & Charfeddine, Lanouar, 2021. "Regime-specific impact of financial reforms on economic growth in Pakistan," Journal of Policy Modeling, Elsevier, vol. 43(1), pages 161-182.

    More about this item

    Keywords

    Instantaneous Inflation; Coincident Profile; Forecast Evaluation; Inflación instantánea; Perfil coincidente; Evaluación de pronósticos;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:1296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.