IDEAS home Printed from https://ideas.repec.org/p/bde/wpaper/1323.html
   My bibliography  Save this paper

Meeting our D€STINY. A Disaggregated €uro area Short Term INdicator model to forecast GDP (Y) growth

Author

Listed:
  • Pablo Burriel

    (Banco de España)

  • María Isabel García-Belmonte

    (Banco de España)

Abstract

In this paper we propose a new real-time forecasting model for euro area GDP growth, D€STINY, which attempts to bridge the existing gap in the literature between large- and small-scale dynamic factor models. By adopting a disaggregated modelling approach, D€STINY uses most of the information available for the euro area and the member countries (around 100 economic indicators), but without incurring in the nite sample problems of the large-scale methods, since all the estimated models are of a small scale. An empirical pseudo-real time application for the period 2004-2013 shows that D€STINY´s forecasting performance is clearly better than the standard alternative models and than the publicly available forecasts of other institutions. This is especially true for the period since the beginning of the crisis, which suggests that our approach may be more robust to periods of highly volatile data and to the possible presence of structural breaks in the sample.

Suggested Citation

  • Pablo Burriel & María Isabel García-Belmonte, 2013. "Meeting our D€STINY. A Disaggregated €uro area Short Term INdicator model to forecast GDP (Y) growth," Working Papers 1323, Banco de España.
  • Handle: RePEc:bde:wpaper:1323
    as

    Download full text from publisher

    File URL: http://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/13/Fich/dt1323e.pdf
    File Function: First version, December 2013
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    business cycles; output growth; time series; Euro-STING model; large-scale model;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bde:wpaper:1323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ángel Rodríguez. Electronic Dissemination of Information Unit. Research Department. Banco de España (email available below). General contact details of provider: https://edirc.repec.org/data/bdegves.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.