IDEAS home Printed from https://ideas.repec.org/p/bca/bocsan/19-17.html
   My bibliography  Save this paper

A Structural Model of the Global Oil Market

Author

Listed:
  • Reinhard Ellwanger

Abstract

This note presents a structural vector autoregressive (SVAR) model of the global oil market. The model identifies four types of shocks with different economic interpretations: oil supply shocks, oil-market-specific demand shocks, storage demand shocks and shocks to global economic growth. The historical decomposition of oil price fluctuations suggests that oil supply shocks were the dominant force during the 2014–15 oil price decline. Several examples illustrate the model’s usefulness for conditional forecasts of oil market variables under different scenarios for global GDP growth and oil consumption.

Suggested Citation

  • Reinhard Ellwanger, 2019. "A Structural Model of the Global Oil Market," Staff Analytical Notes 2019-17, Bank of Canada.
  • Handle: RePEc:bca:bocsan:19-17
    as

    Download full text from publisher

    File URL: https://www.bankofcanada.ca/2019/06/staff-analytical-note-2019-17/
    File Function: Abstract
    Download Restriction: no

    File URL: https://www.bankofcanada.ca/wp-content/uploads/2019/06/san2019-17.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, September.
    2. René Lalonde & Dirk Muir, 2007. "The Bank of Canada's Version of the Global Economy Model (BoC-GEM)," Technical Reports 98, Bank of Canada.
    3. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    4. Kilian, Lutz & Zhou, Xiaoqing, 2018. "Modeling fluctuations in the global demand for commodities," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 54-78.
    5. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    6. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    7. Christiane Baumeister & Lutz Kilian, 2014. "Real-Time Analysis of Oil Price Risks Using Forecast Scenarios," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 62(1), pages 119-145, April.
    8. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    9. Doga Bilgin & Reinhard Ellwanger, 2019. "The Simple Economics of Global Fuel Consumption," Staff Working Papers 19-35, Bank of Canada.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Étienne Latulippe & Kun Mo, 2019. "Outlook for Electric Vehicles and Implications for the Oil Market," Staff Analytical Notes 2019-19, Bank of Canada.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
    2. Lutz Kilian & Xiaoqing Zhou, 2020. "Does drawing down the US Strategic Petroleum Reserve help stabilize oil prices?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 673-691, September.
    3. Valenti, Daniele & Bastianin, Andrea & Manera, Matteo, 2023. "A weekly structural VAR model of the US crude oil market," Energy Economics, Elsevier, vol. 121(C).
    4. Maghyereh, Aktham & Abdoh, Hussein, 2021. "The effect of structural oil shocks on bank systemic risk in the GCC countries," Energy Economics, Elsevier, vol. 103(C).
    5. Jochen H. F. Güntner & Katharina Linsbauer, 2018. "The Effects of Oil Supply and Demand Shocks on U.S. Consumer Sentiment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1617-1644, October.
    6. Lutz Kilian & Xiaoqing Zhou, 2023. "The Econometrics of Oil Market VAR Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 65-95, Emerald Group Publishing Limited.
    7. Filippo Lechthaler & Lisa Leinert, 2019. "Moody oil: What is driving the crude oil price?," Empirical Economics, Springer, vol. 57(5), pages 1547-1578, November.
    8. Robert Socha & Piotr Wdowiński, 2018. "Crude oil price and speculative activity: a cointegration analysis," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(3), pages 263-304, September.
    9. Bilgin, Doga & Ellwanger, Reinhard, 2024. "A simple model of global fuel consumption," Energy Economics, Elsevier, vol. 130(C).
    10. Jin, Xin, 2019. "The role of market expectations in commodity price dynamics: Evidence from oil data," Journal of International Money and Finance, Elsevier, vol. 90(C), pages 1-18.
    11. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    12. Lutz Kilian, 2023. "How to Construct Monthly VAR Proxies Based on Daily Futures Market Surprises," Working Papers 2310, Federal Reserve Bank of Dallas.
    13. Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2014. "Are there gains from pooling real-time oil price forecasts?," Energy Economics, Elsevier, vol. 46(S1), pages 33-43.
    14. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    15. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    16. Kyritsis, Evangelos & Serletis, Apostolos, 2018. "The zero lower bound and market spillovers: Evidence from the G7 and Norway," Research in International Business and Finance, Elsevier, vol. 44(C), pages 100-123.
    17. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    18. David S. Jacks & Martin Stuermer, 2021. "Dry bulk shipping and the evolution of maritime transport costs, 1850–2020," Australian Economic History Review, Economic History Society of Australia and New Zealand, vol. 61(2), pages 204-227, July.
    19. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    20. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.

    More about this item

    Keywords

    Economic models;

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocsan:19-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bocgvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.