IDEAS home Printed from https://ideas.repec.org/p/bca/bocawp/09-34.html
   My bibliography  Save this paper

A Consistent Test for Multivariate Conditional Distributions

Author

Listed:
  • Fuchun Li
  • Greg Tkacz

Abstract

We propose a new test for a multivariate parametric conditional distribution of a vector of variables yt given a conditional vector xt. The proposed test is shown to have an asymptotic normal distribution under the null hypothesis, while being consistent for all fixed alternatives, and having non-trivial power against a sequence of local alternatives. Monte Carlo simulations show that our test has reasonable size and good power for both univariate and multivariate models, even for highly persistent dependent data with sample sizes often encountered in empirical finance.

Suggested Citation

  • Fuchun Li & Greg Tkacz, 2009. "A Consistent Test for Multivariate Conditional Distributions," Staff Working Papers 09-34, Bank of Canada.
  • Handle: RePEc:bca:bocawp:09-34
    as

    Download full text from publisher

    File URL: https://www.bankofcanada.ca/wp-content/uploads/2010/02/wp09-34.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kheifets, Igor L., 2018. "Multivariate specification tests based on a dynamic Rosenblatt transform," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 1-14.
    2. Frank Schuhmacher & Hendrik Kohrs & Benjamin R. Auer, 2021. "Justifying Mean-Variance Portfolio Selection when Asset Returns Are Skewed," Management Science, INFORMS, vol. 67(12), pages 7812-7824, December.

    More about this item

    Keywords

    Econometric and statistical methods;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:09-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bocgvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.