IDEAS home Printed from https://ideas.repec.org/p/bay/rdwiwi/480.html
   My bibliography  Save this paper

Consistency of nonlinear regression quantiles under Type I censoring weak dependence and general covariate design

Author

Listed:
  • Oberhofer, Walter
  • Haupt, Harry

Abstract

For both deterministic or stochastic regressors, as well as parametric nonlinear or linear regression functions, we prove the weak consistency of the coefficient estimators for the Type I censored quantile regression model under different censoring mechanisms with censoring points depending on the observation index (in a nonstochastic manner) and a weakly dependent error process. Our argumentation is based on an exposition of the connection between the residuals of the economically relevant model at the outset of the censored regression problem, and the residuals which are subject to the corresponding optimization process of censored quantile regression. In dieser Arbeit wird die schwache Konsistenz der Koeffizientenschätzer für das zensierte (Typ I) Quantilsregressionsmodell unter sehr allgemeinen Bedingungen -- lineare und nichtlineare Regressionsfunktionen, deterministische und stochastische Regressoren, Zensierungsgrenzen die (in nichtstochastischer Weise) vom Beobachtungsindex abhängen sowie schwach abhängige Fehlerterme -- bewiesen. Die Argumentation basiert dabei auf dem Zusammenhang zwischen den ökonomischen relevanten Residuen des Ausgangsmodells und den Residuen die Gegenstand der Zielfunktion des Optimierungskalküls der zensierten Quantilsregression sind.

Suggested Citation

  • Oberhofer, Walter & Haupt, Harry, 2005. "Consistency of nonlinear regression quantiles under Type I censoring weak dependence and general covariate design," University of Regensburg Working Papers in Business, Economics and Management Information Systems 406, University of Regensburg, Department of Economics.
  • Handle: RePEc:bay:rdwiwi:480
    as

    Download full text from publisher

    File URL: https://epub.uni-regensburg.de/4521/1/DP406_OH.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mukherjee, Kanchan, 2000. "Linearization Of Randomly Weighted Empiricals Under Long Range Dependence With Applications To Nonlinear Regression Quantiles," Econometric Theory, Cambridge University Press, vol. 16(3), pages 301-323, June.
    2. Oberhofer, Walter & Haupt, Harry, 2005. "The asymptotic distribution of the unconditional quantile estimator under dependence," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 243-250, July.
    3. Newey, Whitney K. & Powell, James L., 1990. "Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 6(3), pages 295-317, September.
    4. Arthur Lewbel & Oliver Linton, 2002. "Nonparametric Censored and Truncated Regression," Econometrica, Econometric Society, vol. 70(2), pages 765-779, March.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, September.
    7. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    8. De Gooijer J.G. & Zerom D., 2003. "On Additive Conditional Quantiles With High Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 135-146, January.
    9. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    10. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    11. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(1), pages 169-192, February.
    12. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    13. Chen, Songnian & Khan, Shakeeb, 2000. "Estimating censored regression models in the presence of nonparametric multiplicative heteroskedasticity," Journal of Econometrics, Elsevier, vol. 98(2), pages 283-316, October.
    14. Bilias, Yannis & Chen, Songnian & Ying, Zhiliang, 2000. "Simple resampling methods for censored regression quantiles," Journal of Econometrics, Elsevier, vol. 99(2), pages 373-386, December.
    15. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    16. Ioannides, D. A., 2004. "Fixed design regression quantiles for time series," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 235-245, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    2. Oberhofer, Walter & Haupt, Harry, 2003. "Nonlinear quantile regression under dependence and heterogeneity," University of Regensburg Working Papers in Business, Economics and Management Information Systems 388, University of Regensburg, Department of Economics.
    3. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    4. Rima Rajab & Milan Dražić & Nenad Mladenović & Pavle Mladenović & Keming Yu, 2015. "Fitting censored quantile regression by variable neighborhood search," Journal of Global Optimization, Springer, vol. 63(3), pages 481-500, November.
    5. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    6. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    7. Chen, Songnian & Khan, Shakeeb, 2003. "Rates of convergence for estimating regression coefficients in heteroskedastic discrete response models," Journal of Econometrics, Elsevier, vol. 117(2), pages 245-278, December.
    8. Bilias, Yannis & Florios, Kostas & Skouras, Spyros, 2019. "Exact computation of Censored Least Absolute Deviations estimator," Journal of Econometrics, Elsevier, vol. 212(2), pages 584-606.
    9. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    10. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    11. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    12. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    13. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    14. Machado, José A.F. & Santos Silva, J.M.C. & Wei, Kehai, 2016. "Quantiles, corners, and the extensive margin of trade," European Economic Review, Elsevier, vol. 89(C), pages 73-84.
    15. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Dispersion estimation; Earnings risk; Censoring; Quantile regression; Occupational choice; Sorting; Risk preferences; SOEP; IABS," ECONtribute Discussion Papers Series 028, University of Bonn and University of Cologne, Germany.
    16. Chen, Songnian & Wang, Qian, 2023. "Quantile regression with censoring and sample selection," Journal of Econometrics, Elsevier, vol. 234(1), pages 205-226.
    17. Bilias, Yannis & Chen, Songnian & Ying, Zhiliang, 2000. "Simple resampling methods for censored regression quantiles," Journal of Econometrics, Elsevier, vol. 99(2), pages 373-386, December.
    18. Fan, Yanqin & Liu, Ruixuan, 2018. "Partial identification and inference in censored quantile regression," Journal of Econometrics, Elsevier, vol. 206(1), pages 1-38.
    19. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    20. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.

    More about this item

    Keywords

    Quantil ; Nichtlineare Regression; Typ I Zensierung; Quantile regression ; nonlinear regression ; Type I censoring;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bay:rdwiwi:480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gernot Deinzer (email available below). General contact details of provider: https://edirc.repec.org/data/wfregde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.