IDEAS home Printed from https://ideas.repec.org/p/bar/bedcje/200291.html
   My bibliography  Save this paper

A Note on Shapleys Convex Measure Games

Author

Listed:
  • Fco. Javier Martinez de Albeniz Salas
  • Carlos Rafels Pallarola

    (Universitat de Barcelona)

Abstract

L. S. Shapley, in his paper Cores of Convex Games, introduces Convex Measure Games, those that are induced by a convex function on R, acting over a measure on the coalitions. But in a note he states that if this function is a function of several variables, then convexity for the function does not imply convexity of the game or even superadditivity. We prove that if the function is directionally convex, the game is convex, and conversely, any convex game can be induced by a directionally convex function acting over measures on the coalitions, with as many measures as players.

Suggested Citation

  • Fco. Javier Martinez de Albeniz Salas & Carlos Rafels Pallarola, 2002. "A Note on Shapleys Convex Measure Games," Working Papers in Economics 91, Universitat de Barcelona. Espai de Recerca en Economia.
  • Handle: RePEc:bar:bedcje:200291
    as

    Download full text from publisher

    File URL: http://www.ere.ub.es/dtreball/E0291.rdf/at_download/file
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moshe Shaked & J. Shanthikumar, 1990. "Parametric stochastic convexity and concavity of stochastic processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(3), pages 509-531, September.
    2. Rafels, Carles & Ybern, Neus, 1995. "Even and Odd Marginal Worth Vectors, Owen's Multilinear Extension and Convex Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(2), pages 113-126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Platz, T.T. & Hamers, H.J.M. & Quant, M., 2011. "Characterizing Compromise Stability of Games Using Larginal Vectors," Discussion Paper 2011-058, Tilburg University, Center for Economic Research.
    2. Laureano Escudero & Eva-María Ortega, 2009. "How retention levels influence the variability of the total risk under reinsurance," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 139-157, July.
    3. Ceparano, Maria Carmela & Quartieri, Federico, 2017. "Nash equilibrium uniqueness in nice games with isotone best replies," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 154-165.
    4. Josep Maria Izquierdo Aznar & Carlos Rafels Pallarola, 2002. "Coalitionally Monotonic Set-solutions for Cooperative TU Games," Working Papers in Economics 75, Universitat de Barcelona. Espai de Recerca en Economia.
    5. Denuit, Michel & Mesfioui, Mhamed, 2013. "Multivariate higher-degree stochastic increasing convexity," LIDAM Discussion Papers ISBA 2013016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Alfred Müller & Marco Scarsini, 2001. "Stochastic Comparison of Random Vectors with a Common Copula," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 723-740, November.
    7. Ludolf E. Meester & J. George Shanthikumar, 1999. "Stochastic Convexity on General Space," Mathematics of Operations Research, INFORMS, vol. 24(2), pages 472-494, May.
    8. Stef Tijs & Rodica Brânzei, 2004. "Various characterizations of convex fuzzy games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 399-408, December.
    9. Alec Morton, 2006. "Structural properties of network revenue management models: An economic perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 748-760, December.
    10. van Velzen, S. & Hamers, H.J.M. & Norde, H.W., 2002. "Convexity and Marginal Vectors," Discussion Paper 2002-53, Tilburg University, Center for Economic Research.
    11. Fabrizio Durante, 2009. "Construction of non-exchangeable bivariate distribution functions," Statistical Papers, Springer, vol. 50(2), pages 383-391, March.
    12. Trine Platz & Herbert Hamers & Marieke Quant, 2014. "C-complete sets for compromise stable games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(2), pages 213-223, October.
    13. Xie, Hongmei & Hu, Taizhong, 2010. "Some new results on multivariate dispersive ordering of generalized order statistics," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 964-970, April.
    14. Escudero, Laureano F. & Ortega, Eva-María, 2008. "Actuarial comparisons for aggregate claims with randomly right-truncated claims," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 255-262, October.
    15. Chuancun Yin, 2019. "Stochastic Orderings of Multivariate Elliptical Distributions," Papers 1910.07158, arXiv.org, revised Nov 2019.
    16. Ortega, Eva-María & Escudero, Laureano F., 2010. "On expected utility for financial insurance portfolios with stochastic dependencies," European Journal of Operational Research, Elsevier, vol. 200(1), pages 181-186, January.
    17. J. M. Fernández-Ponce & M. R. Rodríguez-Griñolo, 2017. "New properties of the orthant convex-type stochastic orders," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 618-637, September.
    18. Arlotto, Alessandro & Scarsini, Marco, 2009. "Hessian orders and multinormal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2324-2330, November.
    19. Michel M. Denuit & Mhamed Mesfioui, 2016. "Multivariate Higher-Degree Stochastic Increasing Convexity," Journal of Theoretical Probability, Springer, vol. 29(4), pages 1599-1623, December.
    20. Haijun Li & Susan H. Xu, 2001. "Directionally Convex Comparison of Correlated First Passage Times," Methodology and Computing in Applied Probability, Springer, vol. 3(4), pages 365-378, December.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bar:bedcje:200291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Espai de Recerca en Economia (email available below). General contact details of provider: https://edirc.repec.org/data/feubaes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.