IDEAS home Printed from https://ideas.repec.org/p/auc/wpaper/149.html
   My bibliography  Save this paper

Discrete Fourier Transforms of Fractional Processes August

Author

Listed:
  • Phillips, Peter

Abstract

Discrete Fourier transforms (dft's) of fractional processes are studied and a exact representation of the dft is given in terms of the component data. The new representation gives the frequency domain form of the model for a fractional process, and is particularly useful in analyzing the asymptotic behavior of the dft and periodogram in the nonstationary case when the memory parameter d > 1/2. Various asymptotic approximations are suggested. It is shown that smoothed periodogram spectral estimates remain consistent for frequencies away from the origin in the nonstationary case provided the memory parameter d < 1. When d = 1, the spectral estimates are inconsistent and converge weakly to random variates. Applications of the theory to log periodogram regression and local Whittle estimation of the memory parameter are discussed and some modified versions of these procedures are suggested.

Suggested Citation

  • Phillips, Peter, 1999. "Discrete Fourier Transforms of Fractional Processes August," Working Papers 149, Department of Economics, The University of Auckland.
  • Handle: RePEc:auc:wpaper:149
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2292/149
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Discrete Fourier transform; Economics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:auc:wpaper:149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Library Digital Development (email available below). General contact details of provider: https://edirc.repec.org/data/deaucnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.