IDEAS home Printed from https://ideas.repec.org/p/arz/wpaper/eres2019_329.html
   My bibliography  Save this paper

Text-Based Rental Rate Predictions of Airbnb Listings

Author

Listed:
  • Norbert Pfeifer

Abstract

The validation of house price value remains a critical task for scientific research as well as for practitioners. The following paper investigates this challenge by integrating textual-based information contained in real estate descriptions. More specifically, we show different approaches surrounding how to integrate verbal descriptions from real estate advertisements in an automated valuation model. By using Airbnb listing data, we address the proposed methods against a traditional hedonic-based approach, where we show that a neural network-based prediction model—featuring only information from verbal descriptions—are able to outperform a traditional hedonic-based model estimated with physical attributes, such as bathrooms or/and bedrooms. We also draw attention to techniques that allow for interrelations between physical, locational, and qualitative, text-based attributes. The results strongly suggest the integration of textual information, specifically modelled in a 2-stage model architecture in which the first model (recurrent long short-term memory network) outputs a probability distribution over price classifications, which is then used along with quantitative measurements in a stacked feed-forward neural network.

Suggested Citation

  • Norbert Pfeifer, 2019. "Text-Based Rental Rate Predictions of Airbnb Listings," ERES eres2019_329, European Real Estate Society (ERES).
  • Handle: RePEc:arz:wpaper:eres2019_329
    as

    Download full text from publisher

    File URL: https://eres.architexturez.net/doc/oai-eres-id-eres2019-329
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Vargas-Calder'on & Jorge E. Camargo, 2020. "Towards robust and speculation-reduction real estate pricing models based on a data-driven strategy," Papers 2012.09115, arXiv.org.

    More about this item

    Keywords

    AVM; housing; Neural Network; NLP;
    All these keywords.

    JEL classification:

    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arz:wpaper:eres2019_329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Architexturez Imprints (email available below). General contact details of provider: https://edirc.repec.org/data/eressea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.