IDEAS home Printed from https://ideas.repec.org/p/arz/wpaper/eres2013_219.html
   My bibliography  Save this paper

Forecasting Turning Points in Real Estate Yields

Author

Listed:
  • Sotiris Tsolacos
  • Chris Brooks

Abstract

Determining the behaviour of yields remains a significant area of research in the real estate field. The last cycle reminded investors of the impact on values from the sudden and largely unpredictable yield changes. Initially, capital values took a major hit from yield rises but subsequently quick reversals in this path generated investment opportunities in several markets. Early detection of yield movements and existence of advance signals about likely forthcoming adjustments in yields is of significant value to investors and lenders. The main interest in this study is to study the predictive content of leading indicator series for turning points in real estate yields defined, in this study, to be the times when yields compress (begin a downward trend) and rise (start following an upward path). More specifically the objective is to take a forward-looking stance and generate probability signals of imminent movements in yields that will represent actionable information for investors. The majority of the previous analysis of yield movements is focused on regression analysis and traditional time-series models such as ARIMAs and vector autoregressions. Such models provide the basis for point forecasts for yields which to a degree can pick up turning points. The present study employs a dichotomous-variable methodology. A probit model, which is known as the natural model to use for the prediction of turning points, is constructed to interpret signals from leading indicators for possible yield swings. The leading indicators represent economic leading indicators, financial and other spreads and expectations-sentiment data. Apparently this approach differs from the previous work on yield forecasting given the focus on calculating turning point probabilities. However the probit based outcomes complement the analysis and predictions from other modelling and forecasting methodologies.Prime office yield data for Munich, London West End, Paris CBD and Madrid are used. The selected office centres aim to test the probit approach with leading indicators in geographies which have had different experiences during the eurozone sovereign debt crisis. The evaluation of the resulting models takes place with the commonly used criteria applied to binary models. However, the probability forecasts will be assessed explicitly in the context of the realised yield swings in the recent cycle. Finally the study provides forecasts for turning points outside the sample period.

Suggested Citation

  • Sotiris Tsolacos & Chris Brooks, 2013. "Forecasting Turning Points in Real Estate Yields," ERES eres2013_219, European Real Estate Society (ERES).
  • Handle: RePEc:arz:wpaper:eres2013_219
    as

    Download full text from publisher

    File URL: https://eres.architexturez.net/doc/oai-eres-id-eres2013-219
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arz:wpaper:eres2013_219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Architexturez Imprints (email available below). General contact details of provider: https://edirc.repec.org/data/eressea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.