IDEAS home Printed from https://ideas.repec.org/p/arz/wpaper/2022_18.html
   My bibliography  Save this paper

Human emotion recognition in the significance assessment of property attributes

Author

Listed:
  • Malgorzata Renigier-Biozor
  • Artur Janowski
  • Marek Walacik
  • Aneta Chmielewska

Abstract

One of the largest problems in the real estate market analysis, which includes valuation, is determining the significance of individual property attributes that may affect value or attractiveness perception. The study attempts to assess the significance of selected attributes of real estate based on the detection and analysis of the emotions of potential investors. Human facial expression is a carrier of information that can be recorded and interpreted effectively via the use of artificial intelligence methods, machine learning and computer vision. The development of a reliable algorithm requires, in this case, the identification and investigation of factors that may affect the final solution of the problem, from behavioural aspects through technological possibilities. In the presented experiment, an approach that correlates the emotional states of buyers with the visualization of selected attributes of properties is utilized. The objective of this study is to develop an original method for assessing the significance of property attributes based on emotion recognition technology as an alternative to the commonly used methods in the real estate analysis and valuation, which are usually based on surveys. The empirical analysis enabled determination of the mainstream property attributes significance from evoked emotions intensity within the group of property clients. The significance ranking determined on the basis of the unconscious expressed facial emotions was verified and compared to the answers given in a form of questionnaire. The results have shown that the conscious declaration of the attribute ranking differs from the emotion detection conclusions in several cases.

Suggested Citation

  • Malgorzata Renigier-Biozor & Artur Janowski & Marek Walacik & Aneta Chmielewska, 2022. "Human emotion recognition in the significance assessment of property attributes," ERES 2022_18, European Real Estate Society (ERES).
  • Handle: RePEc:arz:wpaper:2022_18
    as

    Download full text from publisher

    File URL: https://eres.architexturez.net/doc/eres-id-eres2022-18
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Artificial Intelligence; attribute significance; emotion recognition technology; human emotion detection;
    All these keywords.

    JEL classification:

    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arz:wpaper:2022_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Architexturez Imprints (email available below). General contact details of provider: https://edirc.repec.org/data/eressea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.