IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0607268.html
   My bibliography  Save this paper

Mean Exit Time and Survival Probability within the CTRW Formalism

Author

Listed:
  • Miquel Montero
  • Jaume Masoliver

Abstract

An intense research on financial market microstructure is presently in progress. Continuous time random walks (CTRWs) are general models capable to capture the small-scale properties that high frequency data series show. The use of CTRW models in the analysis of financial problems is quite recent and their potentials have not been fully developed. Here we present two (closely related) applications of great interest in risk control. In the first place, we will review the problem of modelling the behaviour of the mean exit time (MET) of a process out of a given region of fixed size. The surveyed stochastic processes are the cumulative returns of asset prices. The link between the value of the MET and the timescale of the market fluctuations of a certain degree is crystal clear. In this sense, MET value may help, for instance, in deciding the optimal time horizon for the investment. The MET is, however, one among the statistics of a distribution of bigger interest: the survival probability (SP), the likelihood that after some lapse of time a process remains inside the given region without having crossed its boundaries. The final part of the article is devoted to the study of this quantity. Note that the use of SPs may outperform the standard "Value at Risk" (VaR) method for two reasons: we can consider other market dynamics than the limited Wiener process and, even in this case, a risk level derived from the SP will ensure (within the desired quintile) that the quoted value of the portfolio will not leave the safety zone. We present some preliminary theoretical and applied results concerning this topic.

Suggested Citation

  • Miquel Montero & Jaume Masoliver, 2006. "Mean Exit Time and Survival Probability within the CTRW Formalism," Papers physics/0607268, arXiv.org, revised Oct 2006.
  • Handle: RePEc:arx:papers:physics/0607268
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0607268
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takero Ibuki & Jun-ichi Inoue, 2011. "Response of double-auction markets to instantaneous Selling–Buying signals with stochastic Bid–Ask spread," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 6(2), pages 93-120, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0607268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.