IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0603098.html
   My bibliography  Save this paper

Why do Hurst exponents of traded value increase as the logarithm of company size?

Author

Listed:
  • Zoltan Eisler
  • Janos Kertesz

Abstract

The common assumption of universal behavior in stock market data can sometimes lead to false conclusions. In statistical physics, the Hurst exponents characterizing long-range correlations are often closely related to universal exponents. We show, that in the case of time series of the traded value, these Hurst exponents increase logarithmically with company size, and thus are non-universal. Moreover, the average transaction size shows scaling with the mean transaction frequency for large enough companies. We present a phenomenological scaling framework that properly accounts for such dependencies.

Suggested Citation

  • Zoltan Eisler & Janos Kertesz, 2006. "Why do Hurst exponents of traded value increase as the logarithm of company size?," Papers physics/0603098, arXiv.org.
  • Handle: RePEc:arx:papers:physics/0603098
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0603098
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Cai & Hai-Chuan Xu & Wei-Xing Zhou, 2016. "Taylor's Law of temporal fluctuation scaling in stock illiquidity," Papers 1610.01149, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Xiao Nie, 2021. "Studying the correlation structure based on market geometry," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 411-441, April.
    2. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    3. Park, Sangjin & Yang, Jae-Suk, 2021. "Relationships between capital flow and economic growth: A network analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    4. Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197, arXiv.org, revised May 2013.
    5. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    6. L'ester Alfonso & Danahe E. Garcia-Ramirez & Ricardo Mansilla & C'esar A. Terrero-Escalante, 2020. "Analysis of intra-day fluctuations in the Mexican financial market index," Papers 2002.05697, arXiv.org.
    7. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    8. Liu, Chao & Fan, Yixin & Xie, Qiwei & Wang, Chao, 2022. "Market-based versus bank-based financial structure in China: From the perspective of financial risk," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 24-39.
    9. Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
    10. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    11. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    12. Cuniberti, Gianaurelio & Raberto, Marco & Scalas, Enrico, 1999. "Correlations in the bond-future market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 90-97.
    13. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    14. Bertram, William K., 2005. "A threshold model for Australian Stock Exchange equities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 561-576.
    15. Kutner, Ryszard & Wysocki, Krzysztof, 1999. "Applications of statistical mechanics to non-brownian random motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 67-84.
    16. Shapoval, A., 2010. "Prediction problem for target events based on the inter-event waiting time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5145-5154.
    17. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    18. Marc Potters & Jean-Philippe Bouchaud, 2002. "More statistical properties of order books and price impact," Science & Finance (CFM) working paper archive 0210710, Science & Finance, Capital Fund Management.
    19. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2019. "Correlation patterns in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1026-1037.
    20. Lee, Jae Woo & Eun Lee, Kyoung & Arne Rikvold, Per, 2006. "Multifractal behavior of the Korean stock-market index KOSPI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 355-361.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0603098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.