IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0601002.html
   My bibliography  Save this paper

Optimal Investment Horizons for Stocks and Markets

Author

Listed:
  • A. Johansen
  • I. Simonsen
  • M. H. Jensen

Abstract

The inverse statistics is the distribution of waiting times needed to achieve a predefined level of return obtained from (detrended) historic asset prices \cite{optihori,gainloss}. Such a distribution typically goes through a maximum at a time coined the {\em optimal investment horizon}, $\tau^*_\rho$, which defines the most likely waiting time for obtaining a given return $\rho$. By considering equal positive and negative levels of return, we reported in \cite{gainloss} on a quantitative gain/loss asymmetry most pronounced for short horizons. In the present paper, the inverse statistics for 2/3 of the individual stocks presently in the DJIA is investigated. We show that this gain/loss asymmetry established for the DJIA surprisingly is {\em not} present in the time series of the individual stocks nor their average. This observation points towards some kind of collective movement of the stocks of the index (synchronization).

Suggested Citation

  • A. Johansen & I. Simonsen & M. H. Jensen, 2006. "Optimal Investment Horizons for Stocks and Markets," Papers physics/0601002, arXiv.org.
  • Handle: RePEc:arx:papers:physics/0601002
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0601002
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    2. Zou, Yongjie & Li, Honggang, 2014. "Time spans between price maxima and price minima in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 303-309.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0601002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.