IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0605065.html
   My bibliography  Save this paper

CAPM, rewards, and empirical asset pricing with coherent risk

Author

Listed:
  • Alexander S. Cherny
  • Dilip B. Madan

Abstract

The paper has 2 main goals: 1. We propose a variant of the CAPM based on coherent risk. 2. In addition to the real-world measure and the risk-neutral measure, we propose the third one: the extreme measure. The introduction of this measure provides a powerful tool for investigating the relation between the first two measures. In particular, this gives us - a new way of measuring reward; - a new approach to the empirical asset pricing.

Suggested Citation

  • Alexander S. Cherny & Dilip B. Madan, 2006. "CAPM, rewards, and empirical asset pricing with coherent risk," Papers math/0605065, arXiv.org.
  • Handle: RePEc:arx:papers:math/0605065
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0605065
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
    2. Ignacio Cascos & Ilya Molchanov, 2006. "Multivariate risks and depth-trimmed regions," Papers math/0606520, arXiv.org, revised Nov 2006.
    3. Dyckerhoff, Rainer & Mosler, Karl, 2012. "Weighted-mean regions of a probability distribution," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 318-325.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0605065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.