IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-9903203.html
   My bibliography  Save this paper

"Nonlinear" covariance matrix and portfolio theory for non-Gaussian multivariate distributions

Author

Listed:
  • D. Sornette
  • P. Simonetti
  • J. V. Andersen

Abstract

This paper offers a precise analytical characterization of the distribution of returns for a portfolio constituted of assets whose returns are described by an arbitrary joint multivariate distribution. In this goal, we introduce a non-linear transformation that maps the returns onto gaussian variables whose covariance matrix provides a new measure of dependence between the non-normal returns, generalizing the covariance matrix into a non-linear fractional covariance matrix. This nonlinear covariance matrix is chiseled to the specific fat tail structure of the underlying marginal distributions, thus ensuring stability and good-conditionning. The portfolio distribution is obtained as the solution of a mapping to a so-called phi-q field theory in particle physics, of which we offer an extensive treatment using Feynman diagrammatic techniques and large deviation theory, that we illustrate in details for multivariate Weibull distributions. The main result of our theory is that minimizing the portfolio variance (i.e. the relatively ``small'' risks) may often increase the large risks, as measured by higher normalized cumulants. Extensive empirical tests are presented on the foreign exchange market that validate satisfactorily the theory. For ``fat tail'' distributions, we show that an adequete prediction of the risks of a portfolio relies much more on the correct description of the tail structure rather than on their correlations.

Suggested Citation

  • D. Sornette & P. Simonetti & J. V. Andersen, 1999. ""Nonlinear" covariance matrix and portfolio theory for non-Gaussian multivariate distributions," Papers cond-mat/9903203, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/9903203
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/9903203
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Musshoff, Oliver & Hirschauer, Norbert, 2007. "What benefits are to be derived from improved farm program planning approaches? - The role of time series models and stochastic optimization," Agricultural Systems, Elsevier, vol. 95(1-3), pages 11-27, December.
    2. J. V. Andersen & D. Sornette, 1999. "Have your cake and eat it too: increasing returns while lowering large risks!," Papers cond-mat/9907217, arXiv.org.
    3. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Sophisticated Program Planning Approaches Generate Large Benefits in High Risk Crop Farming," 82nd Annual Conference, March 31 - April 2, 2008, Royal Agricultural College, Cirencester, UK 36865, Agricultural Economics Society.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/9903203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.