IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-9809199.html
   My bibliography  Save this paper

Quantum Field Theory of Treasury Bonds

Author

Listed:
  • Belal E. Baaquie

Abstract

The Heath-Jarrow-Morton (HJM) formulation of treasury bonds in terms of forward rates is recast as a problem in path integration. The HJM-model is generalized to the case where all the forward rates are allowed to fluctuate independently. The resulting theory is shown to be a two-dimensional Gaussian quantum field theory. The no arbitrage condition is obtained and a functional integral derivation is given for the price of a futures and an options contract.

Suggested Citation

  • Belal E. Baaquie, 1998. "Quantum Field Theory of Treasury Bonds," Papers cond-mat/9809199, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/9809199
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/9809199
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carl Chiarella & Nadima El-Hassan, 1997. "Evaluation of Derivative Security Prices in the Heath-Jarrow-Morton Framework as Path Integrals Using Fast Fourier Transform Techniques," Working Paper Series 72, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    2. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    3. D. P. Kennedy, 1997. "Characterizing Gaussian Models of the Term Structure of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 107-118, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Matacz, 2000. "Path dependent option pricing: the path integral partial averaging method," Science & Finance (CFM) working paper archive 500034, Science & Finance, Capital Fund Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belal E. Baaquie & Marakani Srikant & Mitch Warachka, 2002. "A Quantum Field Theory Term Structure Model Applied to Hedging," Papers cond-mat/0206457, arXiv.org.
    2. Belal E. Baaquie & Marakani Srikant & Mitch C. Warachka, 2003. "A Quantum Field Theory Term Structure Model Applied to Hedging," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 443-467.
    3. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    4. Lijun Bo & Ying Jiao & Xuewei Yang, 2011. "Credit derivatives pricing with default density term structure modelled by L\'evy random fields," Papers 1112.2952, arXiv.org.
    5. Ramaprasad Bhar & Carl Chiarella, 1997. "Interest rate futures: estimation of volatility parameters in an arbitrage-free framework," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(4), pages 181-199.
    6. Santa-Clara, Pedro & Sornette, Didier, 2001. "The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 149-185.
    7. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2016. "The stochastic string model as a unifying theory of the term structure of interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 217-237.
    8. Xixuan Han & Boyu Wei & Hailiang Yang, 2018. "Index Options And Volatility Derivatives In A Gaussian Random Field Risk-Neutral Density Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-41, June.
    9. Roncoroni, Andrea & Galluccio, Stefano & Guiotto, Paolo, 2010. "Shape factors and cross-sectional risk," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2320-2340, November.
    10. Alexei Onatski & Slava Kargin, 2004. "Dynamics of Interest Rate Curve by Functional Auto-regression," Econometric Society 2004 North American Summer Meetings 229, Econometric Society.
    11. Carl Chiarella & Nadima El-Hassan, 1999. "Pricing American Interest Rate Options in a Heath-Jarrow-Morton Framework Using Method of Lines," Research Paper Series 12, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Bisht Deepak & Laha, A. K., 2017. "Pricing Option on Commodity Futures under String Shock," IIMA Working Papers WP 2017-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Pierre Collin‐Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    14. Pandher, Gurupdesh, 2007. "Arbitrage-free valuation of interest rate securities under forward curves with stochastic speed and acceleration," Journal of Economic Theory, Elsevier, vol. 137(1), pages 432-459, November.
    15. Albeverio, Sergio & Lytvynov, Eugene & Mahnig, Andrea, 2004. "A model of the term structure of interest rates based on Lévy fields," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 251-263, December.
    16. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2015. "Stochastic string models with continuous semimartingales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 229-246.
    17. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, December.
    18. Casassus, Jaime & Collin-Dufresne, Pierre & Goldstein, Bob, 2005. "Unspanned stochastic volatility and fixed income derivatives pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2723-2749, November.
    19. Demers, Jean-Guy, 2009. "Multiple zone power forwards: A value at risk framework," Energy Economics, Elsevier, vol. 31(5), pages 714-726, September.
    20. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/9809199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.